

exosup2022 : School on Exotic Superconductivity 13-25 June 2022 Cargèse, Corse (France)

Silke Paschen Vienna University of Technology

- Tunable correlation strength
- Phase diagrams governed by quantum fluctuations
- Quantum criticality from vanishing order parameter
- Beyond order-parameter quantum criticality
- Global phase diagram of heavy fermion compounds
- Emergent phases: Unconventional superconductivity

Tunable correlation strength

- Phase diagrams governed by quantum fluctuations
- Quantum criticality from vanishing order parameter
- Beyond order-parameter quantum criticality
- Global phase diagram of heavy fermion compounds
- Emergent phases: Unconventional superconductivity

- Tunable correlation strength
- Phase diagrams governed by quantum fluctuations
- Quantum criticality from vanishing order parameter
- Beyond order-parameter quantum criticality
- Global phase diagram of heavy fermion compounds
- Emergent phases: Unconventional superconductivity

Origin of divergences: Quantum critical points

YbRh₂Si₂

 $Ce_3Pd_{20}Si_6$

(Custers et al., Nature 424 (2003) 524; Martelli et al., PNAS 116 (2019) 08101)

Silke Paschen, TU Wien

Origin of divergences: Quantum critical points

YbRh₂Si₂

 $Ce_3Pd_{20}Si_6$

(Custers et al., Nature 424 (2003) 524; Martelli et al., PNAS 116 (2019) 08101)

Silke Paschen, TU Wien

Phase diagrams governed by quantum fluctuations

Silke Paschen, TU Wien

Phase diagrams governed by quantum fluctuations

- Tunable correlation strength
- Phase diagrams governed by quantum fluctuations
- Quantum criticality from vanishing order parameter
- Beyond order-parameter quantum criticality
- Global phase diagram of heavy fermion compounds
- Emergent phases: Unconventional superconductivity

Classical continuous phase transitions

Classical criticality from order parameter fluctuations

- Order parameter: condensate wave function (normal conductor \rightarrow superconductor), uniform magnetization (para- \rightarrow ferromagnet), ...
- Correlation length: $\xi \sim |T T_c|^{-\nu}$, correlation time: $\tau \sim |T T_c|^{-\nu Z}$
- Scale invariance, universality

(T. Vojta, Physik in unserer Zeit 32 (2001) 38: 2D Ising model)

Silke Paschen, TU Wien

Classical continuous phase transitions

Classical criticality from order parameter fluctuations

- Order parameter: condensate wave function (normal conductor \rightarrow superconductor), uniform magnetization (para- \rightarrow ferromagnet), ...
- Correlation length: $\xi \sim |T T_c|^{-\nu}$, correlation time: $\tau \sim |T T_c|^{-\nu Z}$
- Scale invariance, universality

(T. Vojta, Physik in unserer Zeit 32 (2001) 38: 2D Ising model)

Silke Paschen, TU Wien

Continuous quantum phase transitions

Quantum criticality from order parameter fluctuations

- Order parameter: condensate wave function (normal conductor \rightarrow superconductor), uniform magnetization (para- \rightarrow ferromagnet), ...
- Correlation length: $\xi \sim |B B_C|^{-\nu}$, correlation time: $\tau \sim |B B_C|^{-\nu Z}$
- Scale invariance, universality; $\nu_{qc} \neq \nu_{cc}$

Silke Paschen, TU Wien

"Normal" Q	CPs follow	w Ginzbu	rg, Landau,	Wilson paradigm			
Predictions for some thermodynamic properties							
	d = 2	d = 3	d = 2	d = 3			
	z = 2	z = 2	z = 3	z = 3			
$lpha_{ m cr} \sim$	$\ell n \ell n \frac{1}{T}$	$T^{1/2}$	$\ell n \frac{1}{T}$	$T^{1/3}$			
		- /-					
$C_{ m cr} \sim$	$T\ell n\frac{1}{T}$	$-T^{3/2}$	$T^{2/3}$	$T\ell nrac{1}{T}$			
	$\ell n \ell n \frac{1}{2}$	1	2/2 1	$\begin{pmatrix} & & & & \\ & & & & \end{pmatrix} -1$			
$\Gamma_{r,{ m cr}} \sim$	$\frac{\frac{c n c n T}{T}}{T \ell n \frac{1}{T}}$	$-T^{-1}$	$T^{-2/3}\ell n\frac{1}{T}$	$\left(T^{2/3}\ell n\frac{1}{T}\right)$			
d: dimension, $z = 2$: AFM metal, $z = 3$: FM metal							
α : thermal expansion, <i>C</i> : specific heat, $\Gamma = \alpha/C$: Grüneisen ratio							
(v. Löhneysen et al., Rev. Mod. Phys. 79 (2007) 1015; Hertz & Millis)							
Silke Paschen, TU Wien exosup2022 : School on Exotic Superconductivity, Cargèse, June 13-25, 2022, 19							

"Normal" Q	CPs follo	w Ginzbu	rg, Landau, V	Wilson paradigm			
Predictions for some thermodynamic properties							
	d = 2	d = 3	d = 2	d = 3			
	z = 2	z = 2	z = 3	z = 3			
$lpha_{ m or}\sim$	$lnln\frac{1}{2}$	$T^{1/2}$	$\ell n \frac{1}{2}$	$T^{1/3}$			
αcι		*		-			
$C_{ m cr} \sim$	$T\ell n \frac{1}{T}$	$-T^{3/2}$	$T^{2/3}$	$T\ell n \frac{1}{T}$			
$\Gamma_{r,{ m cr}} \sim$	$\frac{\ell n \ell n \frac{1}{T}}{T \ell n \frac{1}{T}}$	$-T^{-1}$	$T^{-2/3}\ell n\frac{1}{T}$	$\left(T^{2/3}\ell n\frac{1}{T}\right)^{-1}$			
d: dimension, $z = 2$: AFM metal, $z = 3$: FM metal							
α : thermal expansion, <i>C</i> : specific heat, $\Gamma = \alpha/C$: Grüneisen ratio							
(v. Löhneysen et al., Rev. Mod. Phys. 79 (2007) 1015; Hertz & Millis)							

Thermal expansion and Grüneisen ratio: CeNi₂Ge₂

Silke Paschen, TU Wien

- Tunable correlation strength
- Phase diagrams governed by quantum fluctuations
- Quantum criticality from vanishing order parameter
- Beyond order-parameter quantum criticality
- Global phase diagram of heavy fermion compounds
- Emergent phases: Unconventional superconductivity

Deviations from GLW: Jump in Hall effect in YbRh₂Si₂

Silke Paschen, TU Wien

Deviations from GLW: Jump in thermopower in YbRh₂Si₂

Silke Paschen, TU Wien

Understanding in terms of Kondo destruction

Silke Paschen, TU Wien

Dynamical charge response: THz time-domain transmission spectroscopy

- Real and imag. part of $\sigma(\omega)$
- No Kramers-Kronig transformation
- Thin films needed!

Molecular beam epitaxy system

HAADF-STEM image

(Prochaska et al., Science 367 (2020) 285)

Silke Paschen, TU Wien

Relation to other SCES: Strange metal behavior

Silke Paschen, TU Wien

Planckian dissipation? – Low-*T* **electrical transport**

Planckian dissipation in optical conductivity?

$$\operatorname{Re}[\sigma(\omega)] = \sigma_1 = \frac{ne^2\tau}{m} \frac{1}{1+\omega^2\tau^2}$$

$$\operatorname{Im}[\sigma(\omega)] = \sigma_2 = \frac{ne^2\tau}{m} \frac{\omega\tau}{1+\omega^2\tau^2}$$

Silke Paschen, TU Wien

Planckian dissipation in optical conductivity?

YbRh₂Si₂: Non-Drude behavior in strange metal regime \rightarrow Force Drude fit to high *T* and ω data

Silke Paschen, TU Wien

- Tunable correlation strength
- Phase diagrams governed by quantum fluctuations
- Quantum criticality from vanishing order parameter
- Beyond order-parameter quantum criticality
- Global phase diagram of heavy fermion compounds
- Emergent phases: Unconventional superconductivity

- Tunable correlation strength
- Phase diagrams governed by quantum fluctuations
- Quantum criticality from vanishing order parameter
- Beyond order-parameter quantum criticality
- Global phase diagram of heavy fermion compounds
- Emergent phases: Unconventional superconductivity

LGW QCPs lead to spin fluctuation mediated sc pairing

... it is still unconventional sc

- non-f reference compound does not superconduct
- $\Delta C/(\gamma_0 T_c) \sim 1$ and huge $dB_{c2}/dT(T_c)$: quasiparticles are heavy fermions
- BCS pairing unlikely: $v_F \sim v_{ph}$, no retardation, Coulomb interaction important \rightarrow magnetic pairing
- strong pairbreaking by nonmagnetic impurities

Silke Paschen, TU Wien

Is there superconductivity at the QCP of YbRh₂Si₂?

Silke Paschen, TU Wien

The Vienna Microkelvin Laboratory

Silke Paschen, TU Wien

exosup2022 : School on Exotic Superconductivity, Cargèse, June 13-25, 2022, 55

The Vienna Microkelvin Laboratory

Silke Paschen, TU Wien

Magnetization measurements at ultralow temperatures

Shielding below 2 mK at H = 0.012 mT; field-cooled magnetization curves show kinks up to ~ 25 mT; hybrid electronic-nuclear spin order? (Schuberth et al., Science 351 (2016) 485)

Silke Paschen, TU Wien

Electrical resistivity at ultralow temperatures: Iso-*B* **curves**

Electrical resistivity at ultralow temperatures: Iso-*T* **curves**

YbRh₂Si₂

Temperature–magnetic field phase diagrams

YbRh₂Si₂

(Nguyen et al., Nat. Commun. 12 (2021) 4341)

S. Dzsaber*, G. Eguchi, J. Larrea J.*, **D. C. MacFarland***, V. Martelli*, **D. H. Nguyen**, L. Prochaska, A. Prokofiev, A. Sidorenko^{*}, R. Svagera, M. Taupin, M. Waas, X. Yan, D. A. Zocco; A. M. Andrews, H. Detz, W. Schrenk, G. Strasser; M. Bonta, A. Limbeck; P. Blaha Vienna University of Technology, Austria A. Cai*, H.-H. Lai*, S. Grefe, K. Ingersent*, C.-C. Liu, E. M. Nica*, R. Yu*, Q. Si X. Li. J. Kono E. Bianco, S. Yazdi, E. Ringe Rice University, USA **G. Knebel**, G. Lapertot Université Grenoble Alpes, CEA, Grenoble INP, IRIG, PHELIQS, Grenoble, France E. Schuberth Technische Universität München, Germany T. Shiroka; A. McCollam, L. M. K. Tang, B. Vlaar; F. Weickert, R. McDonald, L. Winter, M. Jaime Paul Scherrer Institut, High Field Magnet Laboratory Nijmegen, Los Alamos National Laboratory O. Rubel Department of Materials Science and Engineering, McMaster University

Summary

- In heavy fermion compounds the correlation strength can be tuned
- Singulatities (can) appear at quantum critical points (QCPs)
- Some heavy fermion compounds are well described by GLW QCPs
- Beyond-GLW QCPs are accompanied by Kondo destruction physics
- AF (!) Kondo destruction QCP in finite *B*: Spin triplet pairing?