

Silke Paschen, TU Wien

exosup2022 : School on Exotic Superconductivity 13-25 June 2022 Cargèse, Corse (France)

Silke Paschen Vienna University of Technology

- Heavy fermion systems as models for SCES
- The (single-ion) Kondo effect
- Kondo lattices and heavy fermion compounds
- How to quantify correlation strength
- Functionality from Kondo physics
- Kondo physics in other settings

- Heavy fermion systems as models for SCES
- The (single-ion) Kondo effect
- Kondo lattices and heavy fermion compounds
- How to quantify correlation strength
- Functionality from Kondo physics
- Kondo physics in other settings

What are strongly correlated electrons?

Electrons are "strongly correlated" if their many-body interaction energies dominate the kinetic energies

Materials

- High-T_c cuprates
- Iron pnictides
- Heavy fermions
- Ruthenates
- Organics
- Low-D materials

(SP & Q. Si, Nat. Rev. Phys. 3 (2021) 9)

What are strongly correlated electrons?

Electrons are "strongly correlated" if their many-body interaction energies dominate the kinetic energies

Silke Paschen, TU Wien

Silke Paschen, TU Wien

- Heavy fermion systems as models for SCES
- The (single-ion) Kondo effect
- Kondo lattices and heavy fermion compounds
- How to quantify correlation strength
- Functionality from Kondo physics
- Kondo physics in other settings

"... the resistance curves of the gold wires measured show a minimum ..."

Silke Paschen, TU Wien

The Kondo effect: A microscopic theory

The Kondo Hamiltonian

(Kondo, Prog. Theor. Phys. 32 (1964) 37)

$$H = \sum_{\vec{k}\sigma} \epsilon_{\vec{k}\sigma} c^{\dagger}_{\vec{k}\sigma} c_{\vec{k}\sigma} + J\vec{\sigma}(0)\vec{S}$$

 $\vec{\sigma}(0)$: Spin of conduction electron ensemble at position of local moment \vec{S} *J*: Exchange interaction

Above T_{K} : 3rd order perturbation theory in $J \rightarrow$ scattering rate of conduction electrons off the magnetic impurity diverges with $\ln(D/T)$ as $T \rightarrow 0$ (T_{K} : Kondo temperature; D: Bandwidth of conduction electrons)

Below T_{K} : Strong coupling regime, renormalization group methods, exact diagonalization, ... \rightarrow full moment compensation

Above T_{K} : 3rd order perturbation theory in $J \rightarrow$ scattering rate of conduction electrons off the magnetic impurity diverges with $\ln(D/T)$ as $T \rightarrow 0$ (T_{K} : Kondo temperature; D: Bandwidth of conduction electrons)

Below T_{K} : Strong coupling regime, renormalization group methods, exact diagonalization, ... \rightarrow full moment compensation

The Kondo effect: Physical properties

(graphics: Coleman)

Silke Paschen, TU Wien

- Heavy fermion systems as models for SCES
- The (single-ion) Kondo effect
- Kondo lattices and heavy fermion compounds
- How to quantify correlation strength
- Functionality from Kondo physics
- Kondo physics in other settings

Single-ion Kondo effect \rightarrow Kondo lattice

Silke Paschen, TU Wien

- Heavy fermion systems as models for SCES
- The (single-ion) Kondo effect
- Kondo lattices and heavy fermion compounds
- How to quantify correlation strength
- Functionality from Kondo physics
- Kondo physics in other settings

How to detect and characterize a heavy electron? Specific heat of CeAl₃: $C = \gamma T$, $\gamma = 1620 \text{ mJ/(mol K}^2)$

Silke Paschen, TU Wien

How to detect and characterize a heavy electron? Magnetic susceptibility of CeAl₃: χ = 0.036 emu/mol (SI: 4.52 · 10⁻⁷ m³/mol)

Silke Paschen, TU Wien

How to detect and characterize a heavy electron? Electrical resistivity of CeAl₃: $\rho = \rho_0 + AT^2$ with $A = 35 \mu\Omega$ cm/K²

Silke Paschen, TU Wien

How to detect and characterize a heavy electron?

For comparison: simple metals (Sommerfeld theory)

•
$$C = \gamma T + \beta T^3$$
 at $T << \Theta_D$

 γT : electronic contribution, βT^3 : phonon contribution $\gamma_{\text{theor}} = (\pi^2 N k_B^2) / (2E_F) = (\pi^2 N k_B^2) / (\hbar^2 k_F^2) \cdot m^* \approx 1 \text{ mJ/(mol K}^2)$ Example Au: $N = N_A$, $E_F = 5.53 \text{ eV} \Rightarrow \gamma_{\text{theor}}^{\text{Au}} = 0.63 \text{ mJ/(mol K}^2)$ $\gamma_{\text{exp}}^{\text{Au}} = 0.67 \text{ mJ/(mol K}^2)$ (Ashcroft/Mermin)

•
$$\chi_{\text{Pauli}} \approx \text{const at } T << T_F$$

 $\chi_{\text{Pauli,theor}} = (3\mu_0\mu_B^2N)/(2E_F) = (3\mu_0\mu_B^2N)/(\hbar^2k_F^2) \cdot m^* \approx 10^{-10} \text{ m}^3/\text{mol}$
Example Na: $N = N_A$, $E_F = 3.24 \text{ eV} \Longrightarrow \chi_{\text{Pauli,theor}}^{\text{Na}} = 1.88 \cdot 10^{-10} \text{ m}^3/\text{mol}$
 $\chi_{\text{Pauli,exp}}^{\text{Na}} = 2.0 \cdot 10^{-10} \text{ m}^3/\text{mol}$ (Kittel)

•
$$\rho = \rho_0 + aT^5$$
 at $T << \Theta_D$

 ρ_0 : residual resistivity (defects), aT^5 : scattering from phonons AT^2 term not resolved

 Θ_D : Debye temperature, *N*: number of conduction electrons per mole, k_B : Boltzmann constant, E_F : Fermi energy, μ_0 : Permeability of vacuum, μ_B : Bohr magneton

Silke Paschen, TU Wien

How to detect and characterize a heavy electron?

For comparison: simple metals (Sommerfeld theory)

•
$$C = \gamma T + \beta T^3$$
 at $T << \Theta_D$

 γT : electronic contribution, βT^3 : phonon contribution $\gamma_{\text{theor}} = (\pi^2 N k_B^2) / (2E_F) = (\pi^2 N k_B^2) / (\hbar^2 k_F^2) \cdot m^* \approx 1 \text{ mJ/(mol K}^2)$ Example Au: $N = N_A$, $E_F = 5.53 \text{ eV} \Rightarrow \gamma_{\text{theor}}^{\text{Au}} = 0.63 \text{ mJ/(mol K}^2)$ $\gamma_{\text{exp}}^{\text{Au}} = 0.67 \text{ mJ/(mol K}^2)$ (Ashcroft/Mermin) CeAl₃: $\gamma = 1.62 \text{ J/(mol K}^2)$

• $\chi_{\text{Pauli}} \approx \text{const at } T << T_F$ $\chi_{\text{Pauli,theor}} = (3\mu_0\mu_B^2N)/(2E_F) = (3\mu_0\mu_B^2N)/(\hbar^2k_F^2) \cdot m^* \approx 10^{-10} \text{ m}^3/\text{mol}$ Example Na: $N = N_A$, $E_F = 3.24 \text{ eV} \Longrightarrow \chi_{\text{Pauli,theor}}^{\text{Na}} = 1.88 \cdot 10^{-10} \text{ m}^3/\text{mol}$ $\chi_{\text{Pauli,exp}}^{\text{Na}} = 2.0 \cdot 10^{-10} \text{ m}^3/\text{mol}$ (Kittel) CeAl₃: $\chi = 4.52 \cdot 10^{-7} \text{ m}^3/\text{mol}$

•
$$\rho = \rho_0 + aT^5$$
 at $T << \Theta_D$

 ρ_0 : residual resistivity (defects), aT^5 : scattering from phonons AT^2 term not resolved **CeAl**₃: $\rho = \rho_0 + AT^2$ with $A = 35 \mu \Omega \text{cm/K}^2$

 Θ_D : Debye temperature, *N*: number of conduction electrons per mole, k_B : Boltzmann constant, E_F : Fermi energy, μ_0 : Permeability of vacuum, μ_B : Bohr magneton

Silke Paschen, TU Wien

Low-temperature behaviour & Fermi liquid theory

Ansatz for energy of interacting electrons

$$\varepsilon \left[\delta f\right] = \varepsilon_0 + \sum_{\vec{k}\sigma} \varepsilon_{\vec{k}}^0 \delta f_{\vec{k}} + \frac{1}{2} \sum_{\vec{k}\vec{k}'\sigma\sigma'} \delta f_{\vec{k}} u_{\vec{k}\vec{k}'} \delta f_{\vec{k}'} + \dots$$

Condition for this ansatz to be justified

 One-to-one correspondence between noninteracting and interacting (quasi)particles, no scattering while adiabatically turning on the interaction

$$rac{1}{ au} \sim (\epsilon_1 - \epsilon_F)^2$$
 for $T = 0$
 $rac{1}{ au} \sim (\epsilon_1 - \epsilon_F)^2 + a(k_B T)^2$ for $T > 0$

Silke Paschen, TU Wien

Low-temperature behaviour & Fermi liquid theory

Ansatz for energy of interacting electrons

$$\varepsilon \left[\delta f\right] = \varepsilon_0 + \sum_{\vec{k}\sigma} \varepsilon_{\vec{k}}^0 \delta f_{\vec{k}} + \frac{1}{2} \sum_{\vec{k}\vec{k}'\sigma\sigma'} \delta f_{\vec{k}} u_{\vec{k}\vec{k}'} \delta f_{\vec{k}'} + \dots$$

Condition for this ansatz to be justified

 One-to-one correspondence between noninteracting and interacting (quasi)particles, no scattering while adiabatically turning on the interaction

$$rac{1}{ au} \sim (\epsilon_1 - \epsilon_F)^2$$
 for $T = 0$
 $rac{1}{ au} \sim (\epsilon_1 - \epsilon_F)^2 + a(k_B T)^2$ for $T > 0$

Low-temperature behaviour & Fermi liquid theory

Results: Interaction strength can be quantified by a small number of Landau parameters

exosup2022 : School on Exotic Superconductivity, Cargèse, June 13-25, 2022, 30

Silke Paschen, TU Wien

Silke Paschen, TU Wien

Silke Paschen, TU Wien

How to detect and characterize a heavy electron? Inelastic neutron scattering on YbAgGe (magnetic contribution)

Silke Paschen, TU Wien

How to detect and characterize a heavy electron? Scanning tunneling microscopy (STM) on URu₂Si₂

Silke Paschen, TU Wien

- Heavy fermion systems as models for SCES
- The (single-ion) Kondo effect
- Kondo lattices and heavy fermion compounds
- How to quantify correlation strength
- Functionality from Kondo physics
- Kondo physics in other settings

Silke Paschen, TU Wien

Silke Paschen, TU Wien

FeSi: Photoemission Thermopower/Thermal conductivity

Silke Paschen, TU Wien

FeSb₂: Thermopower

Silke Paschen, TU Wien

Ba₇Ce₁Au₆Si₄₀, Pisarenko plot: $S \propto \frac{m^*}{n^{2/3}}$

Silke Paschen, TU Wien

Correlated metals in the Fermi liquid regime

(Behnia et al., J. Phys.: Condens. Matter 16 (2004) 5187)

- Heavy fermion systems as models for SCES
- The (single-ion) Kondo effect
- Kondo lattices and heavy fermion compounds
- How to quantify correlation strength
- Functionality from Kondo physics
- Kondo physics in other settings

The Kondo effect: Beyond the local moment case

Kondo physics and flat bands in kagome systems: Ni₃In

Silke Paschen, TU Wien

Summary

- In heavy fermion compounds the correlation strength can by huge
- Fermi liquid theory captures even extreme mass renormalizations
- Giant responses can lead to "functionality"
- Kondo physics can be generalized beyond the spin 1/2 case