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 # Ultrafast dynamics in solids

Femtosecond pump-probe experiments: Selective probe of the 
dynamics of various degrees of freedom on very different timescales

• Phonons (THz - midIR)

• Electronic structure  (tr-ARPES, XAS)
• Lattice (Xray, electron diffraction)  
• Collective spin/orbital excitations (RIXS) 

• Aoki et al.  Rev. Mod. Phys. 86, 779 (2014) 
• Giannetti et al. Advances in Physics, 65, 58 (2016)
• Basov, Hsieh, Averitt, Nature Materials 16, 1077 (2017) 
• de la Torre et al., Rev. Mod. Phys. 93, 041002 (2021)

some reviews:

Learn from the dynamics about the relevant 
degrees of freedom and their interactions?

ꔄ 

Reach novel states out of equilibrium?ꔄ 

Major goals:



 # Some examples (towards superconductivity) for motivation

Transient optical transmission on THz-pumped Nb1-xTixNi
Matsunaga et al., PRL 111, 057002 (2013) 
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Non-equilibrium excitation and real-
time observation of collective modes 
of the superconductor (Higgs mode)



 # Some examples (towards superconductivity) for motivation

Light-Induced Superconductivity in a Stripe-Ordered Cuprate
Fausti et al., Science 331, 189 (2011) 

ꔄ Non-equilibrium 
suppression of competing 
(stripe) phase?

Revealing SC response
(Josephson plasmon) at 
1/8 doping after mid-IR 
excitation



Stabilize transient states, which do not exist under 
equilibrium conditions,  trough external driving?

ꔄ

pump: mid-IR 
excitation, close to 
resonance to C60 
vibrations (?)

Optical signatures of superconductivity

Below Tc

Possible light-induced superconductivity in K3C60 at high T
Mitrano et al., Nature 530, 461 (2016)

 # Some examples (towards superconductivity) for motivation

pumped, at 
100K

normal phase



 # Some examples for motivation

”Hidden states”: Long-lived or truly metastable states, reachable 
only along “non-thermal” pathways



 # Pathways to control states out of equilibrium

Control during application of  external fields:

Floquet engineering: Change microscopic 
parameters through external driving

ꔄ

Non-linear phononics: Stabilize novel states 
through coherent excitation of phonons

ꔄ

Coherent ultrafast processes: Light-induced 
currents, HHG, …

ꔄ

Impulsive generation of non-equilibrium states:

!

1

10

100

1E3

1E4

1E5

1

10

100

1E3

1E4

1E5

!Transient modification of the electronic structureꔄ

ꔄ Non-thermal free energy potentials, hidden states



 # Outline

  Part 1: Floquet engineering: (new states by periodic driving)∙
  Part 2: Population dynamics: (new states by photo-doping)∙

This lecture:

More broad (theoretical) view on concepts, in particular 
pathways to reach (novel) states under non-equilibrium 
conditions

  Part 3: Understanding dynamics of symmetry broken states∙

This will not only be focused on superconductivity (… actually, mostly not …)
I guess, the lecture by C. Giannetti will be more specific on non-equilibrium 
superconductivity



Part 1: Floquet engineering



 # General idea:

 can be very different from undriven system:HF

new band structure, artificial magnetic fields, modified many body 
interactions  (magnetic exchange, superconducting pairing)

Projecting out fast oscillations  (suitably time-
averaged dynamics) leads to effective 
Hamiltonian   Heff = HF[S, Ω]

time-periodic Hamiltonian    due to external fields:H(t + T ) = H(t)

f(t) = S(t)cos(Ωt)

ꔄ Stabilize new equilibrium states?
ꔄ for slowly varying envelope:  : 

nontrivial time-dependent forces
Heff(t) = HF[S(t), Ω]



 # Classical example(s)

Effective potential due to rotating magnetic field ꔄ  new stable minimum



 # Mathematical description: Stroboscopic time evolution

Time evolution operator over one period written in terms of Hermitian HF

               U(t + T, t) = Tte−i ∫t+T
t dsH(s) ≡ e−iTHF

φ(t)

T = 2π/Ω

π

φ cos(Ωt)

Illustration: Kapitza pendulum    potential  with new stable minimumHF ≈ V(φ)

Leading approximation for fast driving   HF = 1
T ∫

t+T

t
ds H(s)

 ≡Dynamics at integer 
multiples of T

evolution with time-
independent HF

ꔄ

stroboscopic 
motion

micromotion

Review: Bukov, D’Alessio, 
Polkovnikov, Adv. in Phys, 
64, 139 (2015)



 # Mathematical description: Photon picture

“Bloch Ansatz in time”: 

   ꔄ  Floquet ansatz:   i∂t |ψ(t)⟩ = H(t) |ψ(t)⟩ |ψ(t)⟩ = |u(t)⟩
#

e−iϵt

# is periodic:  |u(t)⟩ = ∑
n

|un⟩e−iΩnt

(Floquet 1886)

Hn−n′ =
1
T ∫

T

0
ds eiΩ(n−n′ )sH(s)(ϵ + nΩ) |un⟩ = ∑

n′ 

Hn−n′ |un′ ⟩

ℋ =
H0 + Ω

H0

H0 − Ω

H1

H1

H2

H−1

H−1H−2

⋱⋱

⋱

⋱

⋱

⋱

⋱

⋱⋱

⋱

:  n-Photon absorption/emissionH±n

 |α, n⟩ : Basis for matterα
: “Photon index”n

         
⏟

Time-independent Schrödinger 
equation ℋu = ϵu
in extended Hilbertspace:



 # High-frequency expansion

⋱

ℋ =
⋱

∙∙
∙
∙∙
∙
∙∙
∙

Floquet spectrum

Ω

undriven: ϵ = Eα + nΩ
driving amplitude

   
   
   

⏟

spectrum of 
 mod HF Ω

As long as  is the largest relevant scale, we can do regular 
perturbation theory to get spectrum of 

Ω
HF

HF = H0 −
∞

∑
n=−∞

H−n
1

nΩ Hn

H1

H1H−1

H−1 H0 − Ω

H0

H0 + Ω

H − Ω

H

H + Ω

 time-average ≡ H̄ “Virtual photon emission and absorption”

H1 H−1

                           
Mikami et al. PRB 93, 144307 (2016)
Bukov, et al. Adv. Phys, 64, 139 (2015)
Eckhard & Anisimovas,  NJP 17, 093039 (2015)



Dynamical localization and 
band flipping



 # Tight-binding model with external electric field

H = − t0(c†
1 c2 + h . c . )+ gE(t)(c†

1 c1 − c†
2 c2) 1 2

E(t)

  Hrot = W†HW + W†i∂tW

Time-dependent unitary transformation   (“rotating frame”):W(t)

  W(t) = e−igA(t)(n1−n2)

= − t0(c†
1 c2ei2gA(t) + h . c . )

∙

Vector-potential representation:   E(t) = − ∂tA∙

Luttinger, Phys. Rev. 84, 814 (1951).
Li et al., PRB 101, 205140 (2020)

Peierls phase: 
(+ dipolar matrix elements)

tab → tabeig ⃗A (t)⋅( ⃗R a− ⃗Rb )

general light matter coupling in TB models:∙

“ ”ϵ( ⃗k ) → ϵ( ⃗k − g ⃗A )

                                 

scalar potential



 # Dynamical localization

1 2

E(t)
H(t) = − t0(c†

1 c2eigA0 cos(Ωt)(t) + h . c . )
Time average     eigA0 cos(Ωt) = J0(gA0)

Dunlap & Krenke, PRB 34, 3625 (1986)

 in high frequency limit: HF

tight-binding model with 
renormalized  hopping

 J0(x)

band flipping

 ϵ(k)
driven

 x ≈ 2.4
dynamical localization

 x
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 # Dynamical band flipping in Hubbard model

Phase diagram of half filled Hubbard model:

BCSBEC

SC

Hubbard model:

H = − t0 ∑
⟨i,j⟩

c†
i,σcj,σ +U∑

i
(ni,↓− 1

2 )(ni,↑− 1
2 )

t0 U

AFM

H = 4t2
0

U ∑
⟨i,j⟩

⃗S i
⃗S j

Heisenberg AFM
Spin-density wave
(Slater AFM)

U

T

U = 0 U > 0U < 0



 # Dynamical band flipping in Hubbard model

 S+
i = c†

i↑ci↓ → (−1)ic†
i↑c†

i↓ ≡ η+
i

 Sz
i = 1

2 (ni↑ − ni↓) → 1
2 (ni↑ + ni↓ − 1) ≡ ηz

i

Spin     Charge pseudospin→
⃗η

AFM at    SC or CDW at :U > 0 → U < 0
  ꔄ   (SC)⟨η±

i ⟩ ∼ (−1)i ⟨c†
i↑c†

i↓⟩ ≠ 0

… particle-hole transformationRelation attractive / repulsive Hubbard model?

:ci,↓ → (−1)i c†
i,↓

check-board sign

   (ni,↓− 1
2 ) → − (ni,↓− 1

2 )
H → − t0 ∑

⟨i,j⟩
c†

i,σcj,σ −U∑
i

(ni,↓− 1
2 )(ni,↑− 1

2 )

                

ꔄ



 # Dynamical band flipping in Hubbard model

Use Floquet drive to flip from attractive to repulsive model?

Periodic driving  ꔄ  hopping renormalization t0 → t0J0(gA0)
ꔄ sign reversal for gA0 ≳ 2.4

  ∙

Equilibrium:  

          related by Ĥ = − t0K̂ + UD̂ ↔ Ĥ = + t0K̂ + UD̂ ciσ → (−1)iciσ

  ∙

ꔄ same equilibrium phases (AFM)

But here we are not talking about equilibrium states!  ∙

 ϵ(k)

 k
Sudden switch 
on of driving:

 ϵ(k)

 k

population inversion, neg. T



 # Dynamical band flipping in Hubbard model

driven state thermalizes to same 
state as attractive model at positive 
temperature Tf

Tsuji, Oka, Werner, Aoki, PRL 106, 236401 (2011)

Thermalization in driven Hamiltonian after switch on of driving?

Temperature      T = − TF

Hamiltonian HF = + t0K̂ + UD̂

( , value depends on 
interaction, switch-on, …)
TF > 0

   ρF ∝ e+βf(t0K̂+UD̂) = e−βf(−t0K̂−UD̂)

                        
ꔄ

 … thermalization at U<0D(t) > 1
4

6 ≡ gA0

Time evolution under periodic driving:

D = ⟨n↑n↓⟩



 # Dynamical band flipping in Hubbard model

Use this to realize superconductivity at high T?  (Tc like for AFM!)

ꔄ hard to find switch on protocol for driving to that  is low
(even within effective Hamiltonian picture)

Tf

Effective Hamiltonian works for   … otherwise 
absorption leads to additional heating (see below)

Ω ≫ U, t0ꔄ

Negative Temperature state unstable when coupled to 
other degrees of freedom

ꔄ

Nevertheless, this examples shows how driving a subset of degrees of 
freedom to a highly excited state, plus engineering of the Hamiltonian 
parameters, can be a route to reach new phases



Floquet Bloch bands



 # Floquet Bloch bands

  H = ∑
k

ϵab(k − eA(t))c†
k,ack,b

Tight-binding model with external force  E(t) = − ∂tA(t)

  ϵ̄ab(k) + v(1)
ab (k)e−iΩt + ⋯

                        

⋱ ⋮
⋯ ϵ̄k + Ω v(1)

k v(2)
k

v(1)
k ϵ̄k v(1)

k

v(2)
k v(1)

k ϵ̄k − Ω ⋯
⋮ ⋱

⋮
u(1)

k

u(0)
k

u(−1)
k
⋮

= ϵF
k

⋮
u(1)

k

u(0)
k

u(−1)
k
⋮

Floquet Blockmatrix:
Ω

k

ϵ(k)

ϵ(k) + Ω

ϵ̄(k)

ϵ̄(k) + Ω

ϵF(k)

ϵF(k) + Ω

undrivendriven (time-average)Floque-Bloch bands

Mixing of Floquet bands due to virtual photon absorption emission

vk vk



 # Nontrivial example: Kitaev model on Honeycomb lattice
Oka and Aoki, Phys. Rev. B 79, 081406(R) (2009); Lindner, Refael, Galitski, Nature Physics 7, 490 (2011)

tab = t0 eiϕab(t) ϕab = e ⃗A (t) ⋅ ( ⃗R a − ⃗R b)

⃗A (t) = ̂xA0 cos(Ωt) + ̂yA0 sin(Ωt)

ꔄ  ϕab = A0 cos(Ωt + φab)

φ = 2π/3 φ = π/3

φ = 5π/3

φ = π

φ = 4π/3

φ = 0

̂x

̂y

circular polarized light:

Fourier transform:

 t(n)
ab = 1

T ∫
T

0
dt einΩt+iϕab(t) = e−inφab

1
T ∫

T

0
dt einΩt+iA0 cos(Ωt)

=Jn(A0)

Honeycomb lattice driven by circularly polarized light:

⃗A (t)



Oka and Aoki, Phys. Rev. B 79, 081406(R) (2009); Lindner, Refael, Galitski, Nature Physics 7, 490 (2011)

ꔄ     ??
∞

∑
n=−∞

H−n
1

nΩ Hn =

 t(n)
ab = e−inφab Jn(A0)

Haldane (1988)Floquet-realization of the Haldane model!

 # Nontrivial example: Kitaev model on Honeycomb lattice

  
[t(−1)

32 c†
3c2, c†

2c1t(1)
21 ]

nΩ =

φ = π/3

φ = 0
1

2
3

(1st oder HF correction to time averaged H)

  = c†
3 c1

|J1(A0) |2

Ω eiπ/3

complex second nearest neighbor hopping, amplitude ∼ A2
0

Ω

π/3



 # Experimental realization
Haldane model Haldane (1988)

φ
+M

−M
zero field Hall effect 

σxy = ν
e2

h

Experiment: 
Graphene: “Light-induced anomalous Hall effect” McIver et al., Nat Phys 16, 38 (2020)

Floquet bands

Cold atoms: Jotzu et al., Nature 515, 237 (2014)



 # Seeing Floquet Bloch bands in trARPES?

  A(ω) ∝ ∑
n

|uk,n |2 δ(ω − ϵF − nΩ)⟨c†
k ck⟩

Sidebands, weight ∝ |uk,n |2

Simple theory of ARPES:  (for a long probe)

  A<(ω) = lim
T→∞

1
T ∫

T

0
dt∫ ds ⟨c†

k (t + s)ck(t)⟩eiωs e−

k

energy transfer 
ω + W

              
hole propagator

  i∂tck(t) = ϵ(k − gA(t))ck(t)
Driven (noninteracting!) system 

  ck(t) = e−iϵF
k t ∑

n
uk,ne−inΩtckꔄ



 # Seeing Floquet Bloch bands in trARPES?
Wang et al, Science (2013) Floquet Bloch bands in BiSe3

Problems:

Disentangling from LAPE∙

Heating  (or non-thermal steady distribution under driving )∙

proper theory of trARPES, 
using NEGF needed

Decoherence∙
  

A(ω) = lim
T→∞

1
T ∫

T

0
dt∫ ds ⟨c†

k (t + s)ck(t)⟩eiωs              

∼ e−γ|s|

see also Aeschlimann et al. (2021)


