

Thermal transport in quantum materials

Lecture no. 2

Louis Taillefer

Université de Sherbrooke CIFAR

Exosup2022 Summer School, Cargèse, June 2022

Measurement of thermal transport

Thermal transport in quantum materials

PART I — Kxx

METALS

1) Electrons & phonons

2) Wiedemann-Franz law in cuprates

SUPERCONDUCTORS

- 1) Cuprates -d-wave + Hc2
- 2) Iron pnictides -s+- or d-wave
- 3) Ruthenate *d*-wave ?

INSULATORS

- 1) Nd2CuO4 phonons
- 2) Nd2CuO4 magnons

3) dmit – spinons ?

Iron-based superconductors

Iron-based superconductors

- 1) Antiferromagnetic superconductors
- 2) Inter-band pairing
- chalcogenides 3) Quantum criticality Structural transition 4) Nematicity 5) Multiple magnetic phases T_N Nematic order 6) Pairing symmetry Coexistence Spin density wave 7) High T_c SC SC Holes **Electrons**

Pnictides/

SC

BaFe2As2

Fermi surface

BaFe2As2

Multi-band Quasi-2D Nesting : SDW or SC

Pairing : inter-band !

Pairing symmetry & mechanism

- 1) S+- and d are close
- 2) Max Tc higher for s+-
- 3) No nodes in S+- ; nodes in d-wave
- 4) Both sensitive to impurities, in general

Fernandes & Millis, PRL 110, 117004 (2013)

SUPERCONDUCTORS

Iron pnictides

(Ba,K)Fe2As2

IOP PUBLISHING

SUPERCONDUCTOR SCIENCE AND TECHNOLOGY

Supercond. Sci. Technol. 25 (2012) 084013 (10pp)

doi:10.1088/0953-2048/25/8/084013

From d-wave to s-wave pairing in the iron-pnictide superconductor (Ba, K)Fe₂As₂

J-Ph Reid¹, A Juneau-Fecteau¹, R T Gordon¹, S René de Cotret¹, N Doiron-Leyraud¹, X G Luo¹, H Shakeripour¹, J Chang¹, M A Tanatar^{2,3}, H Kim^{2,3}, R Prozorov^{2,3}, T Saito⁴, H Fukazawa⁴, Y Kohori⁴, K Kihou⁵, C H Lee⁵, A Iyo⁵, H Eisaki⁵, B Shen⁶, H-H Wen^{6,7} and Louis Taillefer^{1,7}

d-wave

SUPERCONDUCTORS

T (K)

(Ba,K)Fe2As2

s-wave

PHYSICAL REVIEW B 84, 054507 (2011)

Isotropic three-dimensional gap in the iron arsenide superconductor LiFeAs from directional heat transport measurements

M. A. Tanatar,^{1,*} J.-Ph. Reid,² S. René de Cotret,² N. Doiron-Leyraud,² F. Laliberté,² E. Hassinger,² J. Chang,² H. Kim,^{1,3} K. Cho,¹ Yoo Jang Song,⁴ Yong Seung Kwon,⁴ R. Prozorov,^{1,3} and Louis Taillefer^{2,5,†}

s-wave

LiFeAs

PHYSICAL REVIEW B 84, 054507 (2011)

Tc = 18 K

Isotropic three-dimensional gap in the iron arsenide superconductor LiFeAs from directional heat transport measurements

M. A. Tanatar,^{1,*} J.-Ph. Reid,² S. René de Cotret,² N. Doiron-Leyraud,² F. Laliberté,² E. Hassinger,² J. Chang,² H. Kim,^{1,3} K. Cho,¹ Yoo Jang Song,⁴ Yong Seung Kwon,⁴ R. Prozorov,^{1,3} and Louis Taillefer^{2,5,†}

SUPERCONDUCTORS

(Ba,K)Fe2As2

x = 0.4 : s-wave

x = 1.0 : ??

d-wave

KFe2As2

PRL 109, 087001 (2012)

PHYSICAL REVIEW LETTERS

week ending 24 AUGUST 2012

Tc = 4 K

Universal Heat Conduction in the Iron Arsenide Superconductor KFe₂As₂: Evidence of a *d*-Wave State

J.-Ph. Reid,¹ M. A. Tanatar,² A. Juneau-Fecteau,¹ R. T. Gordon,¹ S. René de Cotret,¹ N. Doiron-Leyraud,¹ T. Saito,³ H. Fukazawa,³ Y. Kohori,³ K. Kihou,⁴ C. H. Lee,⁴ A. Iyo,⁴ H. Eisaki,⁴ R. Prozorov,^{2,5} and Louis Taillefer^{1,6,*}

Open circles: Dong et al., PRL 104, 087004 (2010)

d-wave

KFe2As2

week ending 24 AUGUST 2012 Tc = 4 K

PRL 109, 087001 (2012)

PHYSICAL REVIEW LETTERS

Universal Heat Conduction in the Iron Arsenide Superconductor KFe₂As₂: Evidence of a *d*-Wave State

J.-Ph. Reid,¹ M. A. Tanatar,² A. Juneau-Fecteau,¹ R. T. Gordon,¹ S. René de Cotret,¹ N. Doiron-Leyraud,¹ T. Saito,³ H. Fukazawa,³ Y. Kohori,³ K. Kihou,⁴ C. H. Lee,⁴ A. Iyo,⁴ H. Eisaki,⁴ R. Prozorov,^{2,5} and Louis Taillefer^{1,6,*}

Tc = 4 K

Vekhter & Houghton, PRL 83, 4626 (1999)

Tc = 4 K

Different impurity levels

SUPERCONDUCTORS

(Ba,K)Fe2As2

x = 0.4 : s-wave

x = 1.0 : *d*-wave

SUPERCONDUCTORS

KFe2As2

NATURE PHYSICS | VOL 9 | JUNE 2013 | 349

nature physics

PUBLISHED ONLINE: 12 MAY 2013 | DOI: 10.1038/NPHYS2617

Sudden reversal in the pressure dependence of T_c in the iron-based superconductor KFe₂As₂

F. F. Tafti¹, A. Juneau-Fecteau¹, M-È. Delage¹, S. René de Cotret¹, J-Ph. Reid^{1†}, A. F. Wang², X-G. Luo², X. H. Chen², N. Doiron-Leyraud¹ and Louis Taillefer^{1,3}*

FeSe

SUPERCONDUCTORS

s-wave

FeSe

Tc = 9 K

PRL 117, 097003 (2016)

PHYSICAL REVIEW LETTERS

week ending 26 AUGUST 2016

Thermal Conductivity of the Iron-Based Superconductor FeSe: Nodeless Gap with a Strong Two-Band Character

P. Bourgeois-Hope,¹ S. Chi,² D. A. Bonn,^{2,3} R. Liang,^{2,3} W. N. Hardy,^{2,3} T. Wolf,⁴ C. Meingast,⁴ N. Doiron-Leyraud,¹ and Louis Taillefer^{1,3,*}

FeSe

Thermal transport in quantum materials

PART I — Kxx

METALS

1) Electrons & phonons

2) Wiedemann-Franz law in cuprates

SUPERCONDUCTORS

- 1) Cuprates -d-wave + Hc2
- 2) Iron pnictides -s+- or d-wave
- 3) Ruthenate *d*-wave ?

INSULATORS

- 1) Nd2CuO4 phonons
- 2) Nd2CuO4 magnons

3) dmit – spinons ?

Strontium ruthenate

Fermi surface

Sr_2RuO_4

Specific heat

Nishizaki et al. JLT 2000

P-wave with deep minima

Specific heat

Nomura JPSJ 2005

Hassinger et al., PRX 2017

PHYSICAL REVIEW -

0000

Vertical Line Nodes in the Superconducting Gap Structure of Sr₂RuO₄

E. Hassinger,^{1,2,3,*} P. Bourgeois-Hope,¹ H. Taniguchi,^{4,‡} S. René de Cotret,¹ G. Grissonnanche,¹ M. S. Anwar,⁴ Y. Maeno,^{3,4} N. Doiron-Leyraud,¹ and Louis Taillefer^{1,3,†}

Heat conduction in the plane

TABLE I. The properties of five single crystals of Sr₂RuO₄. T_c and δT_c were determined from the ac susceptibility measurements. The impurity scattering rate normalized by the maximum T_c , $\hbar\Gamma/k_BT_{c0}$ is deduced from Eq. (1).

	#1	#2	#3	#4	#5
T_c (K)	1.44	1.32	1.27	1.09	0.71
$\hbar\Gamma_c(\mathbf{K})$ $\hbar\Gamma/k_{\rm B}T_{c0}$	0.02	0.03	0.03	0.05	0.15

Suzuki et al. PRL 2002

Hassinger et al., PRX 2017

Universal heat conduction

PHYSICAL REVIEW X 7, 011032 (2017)

Vertical Line Nodes in the Superconducting Gap Structure of Sr₂RuO₄

E. Hassinger,^{1,2,3,*} P. Bourgeois-Hope,¹ H. Taniguchi,^{4,‡} S. René de Cotret,¹ G. Grissonnanche,¹ M. S. Anwar,⁴ Y. Maeno,^{3,4} N. Doiron-Leyraud,¹ and Louis Taillefer^{1,3,†}

Large finite residual linear term $\frac{\kappa_0}{T} = \frac{k_B^2}{3\hbar} \frac{n}{c} \left(\frac{v_F}{v_\Delta} + \frac{v_\Delta}{v_F} \right)$ d-wave Sr₂RuO₄ k/T (mW/K² cm) # #3

= Line nodes in Sr₂RuO₄

0.03

 T^2 (K²)

0

0

Suzuki et al. PRL 2002

0.06

Heat conduction in the plane residual linear term

Experiment (clean limit) $\kappa_0 / T = 17 \text{ mW} / \text{K}^2 \text{ cm}$

$$\frac{\kappa_0}{T} = \frac{k_B^2}{3\hbar} \frac{n}{c} \left(\frac{v_F}{v_\Delta} + \frac{v_\Delta}{v_F} \right)$$
$$\Delta_\theta = \Delta_0 \cos 2\theta$$
$$v_\Delta = \frac{2\Delta_0}{\hbar k_F}$$
$$\Delta_0 = 2.14 k_B T_c$$

Theory (line node on all three FS sheets): *d*-wave symmetry (4 vertical line nodes): $\kappa_0 / T = 15.5 \text{ mW} / \text{K}^2 \text{ cm}$

Polar gap (horizontal line node): $\kappa_0 / T = 12 \text{ mW} / \text{K}^2 \text{ cm}$

Consistent with line nodes on all three FS sheets

Graf et al. PRB 1996 Durst and Lee PRB 2000

Hassinger et al., PRX 2017

Momentum resolved superconducting energy gaps of Sr₂RuO₄ from quasiparticle interference imaging

-0.5

STM

Rahul Sharma^{a,b}, Stephen D. Edkins^c, Zhenyu Wang^d, Andrey Kostin^{a,b}, Chanchal Sow^{e,f}, Yoshiteru Maeno^e, Andrew P. Mackenzie^{g,h}, J. C. Séamus Davis^{a,g,i,j,1}, and Vidya Madhayan^{d,1}

 $\Delta_{max} \approx 350 \mu eV \qquad \Delta_{max}/kT_c \approx 2$

-1.5

Sr₂RuO

Vertical line nodes

PHYSICAL REVIEW X 7, 011032 (2017)

Vertical Line Nodes in the Superconducting Gap Structure of Sr₂RuO₄

E. Hassinger,^{1,2,3,*} P. Bourgeois-Hope,¹ H. Taniguchi,^{4,‡} S. René de Cotret,¹ G. Grissonnanche,¹ M. S. Anwar,⁴ Y. Maeno,^{3,4} N. Doiron-Leyraud,¹ and Louis Taillefer^{1,3,†}

Field dependence

PHYSICAL REVIEW X 7, 011032 (2017)

Vertical Line Nodes in the Superconducting Gap Structure of Sr₂RuO₄

E. Hassinger,^{1,2,3,*} P. Bourgeois-Hope,¹ H. Taniguchi,^{4,‡} S. René de Cotret,¹ G. Grissonnanche,¹ M. S. Anwar,⁴ Y. Maeno,^{3,4} N. Doiron-Leyraud,¹ and Louis Taillefer^{1,3,†}

