

Thermal transport in quantum materials

Lecture no. 1

Louis Taillefer

Université de Sherbrooke CIFAR

Exosup2022 Summer School, Cargèse, June 2022

Measurement of thermal transport

Thermal transport in quantum materials

PART I — Kxx

METALS

1) Electrons & phonons

2) Wiedemann-Franz law in cuprates

SUPERCONDUCTORS

- 1) Cuprates -d-wave + Hc2
- 2) Iron pnictides -s+- or d-wave
- 3) Ruthenate *d*-wave ?

INSULATORS

- 1) Nd2CuO4 phonons
- 2) Nd2CuO4 magnons
- 3) dmit spinons?

METALS

Thermal transport in quantum materials

PART I – Kxx

METALS

1) Electrons & phonons

2) Wiedemann-Franz law in cuprates

SUPERCONDUCTORS

- 1) Cuprates -d-wave + Hc2
- 2) Iron pnictides -s+- or d-wave
- 3) Ruthenate *d*-wave ?

INSULATORS

- 1) Nd2CuO4 phonons
- 2) Nd2CuO4 magnons

3) dmit – spinons ?

METALS 1) Electrons & phonons

ELECTRONS 1) Elastic scattering

2) Inelastic scattering — electrons, phonons, spin excitations

3) Wiedemann-Franz law (T = 0 limit)

4) Lorenz ratio (T > 0)

PHONONS 1) Scattering processes — boundaries, impurities, electrons, phonons, ...

Wiedemann-Franz law

$$\frac{\kappa}{\sigma} = rac{c_v v^2 \tau/3}{n e^2 \tau/m} = rac{c_v v^2/3}{n e^2/m}$$
 NB.

NB. Assumes that tau is the same...

SOMMERFELD
$$c_v = \frac{\pi^2}{3} k_B^2 g(E_F) T = \frac{\pi^2 k_B^2 n}{m v_F^2} T \qquad \frac{1}{2} m v_F^2 = E_F$$

$$T \to 0 \qquad L = \frac{\kappa}{\sigma T} = \frac{\gamma m v_F^2}{3ne^2} = \frac{\pi^2 k_B^2 n}{3ne^2} = \frac{\pi^2}{3} (\frac{k_B}{e})^2 = 2.44 \times 10^{-8} \text{ W}\Omega/\text{K}^2$$

Cuprate superconductors

CUPRATES

HOLE-DOPED CUPRATES

Six regions

- 1) Superconductivity
- 2) Mott insulator
- 3) Fermi liquid
- 4) Strange metal
- 5) Charge order
- 6) Pseudogap phase

Six regions

- 1) Superconductivity
- 2) Mott insulator
- 3) Fermi liquid
- 4) Strange metal
- 5) Charge order
- 6) Pseudogap phase

at high doping

a) Large Fermi surface — ARPES, quantum osc.b) T^2 resistivity

3) Fermi liquid *at high doping*

a) Large Fermi surface — ARPES, quantum osc. Fermi surface at p = 0.3

Peets et al., New J. Phys. 9, 28 (2007)

Carrier density *n* = 1+*p*

Courtesy of C. Proust

2009 *T*-linear to *T*-quadratic resistivity in h-doped cuprates LSCO

Nakamae et al., PRB 68, 100502 (2003)

Six regions

- 1) Superconductivity
- 2) Mott insulator
- 3) Fermi liquid
- 4) Strange metal
- 5) Charge order
- 6) Pseudogap phase

2009 *T*-linear to *T*-quadratic resistivity in h-doped cuprates LSCO

Nakamae et al., PRB 68, 100502 (2003)

Nd-LSCO Linear-*T* resistivity & upturn

Collignon *et al.*, PRB **95**, 224517 (2017) Daou *et al.*, Nature Physics **5**, 31 (2009)

Two thermodynamic signatures of quantum criticality in cuprates

Komiya *et al.,* J. Phys. **150**, 052118 (2009)

Michon et al., Nature 567, 218 (2019)

METALS 2) Wiedemann-Franz law in cuprates

TI2201

VOLUME 89, NUMBER 14 PHYSICAL REVIEW LETTERS

30 September 200

Heat Transport in a Strongly Overdoped Cuprate: Fermi Liquid and a Pure *d*-Wave BCS Superconductor

Cyril Proust,^{1,*} Etienne Boaknin,¹ R.W. Hill,¹ Louis Taillefer,¹ and A. P. Mackenzie²

$$\rho(T) = \rho_0 + bT + cT^2$$

Heat Transport in a Strongly Overdoped Cuprate: Fermi Liquid and a Pure *d*-Wave BCS Superconductor

Cyril Proust,^{1,*} Etienne Boaknin,¹ R.W. Hill,¹ Louis Taillefer,¹ and A. P. Mackenzie²

METALS 2) Wiedemann-Franz law in cuprates

Nd-LSCO

The cuprate Nd-LSCO

The pseudogap phase

Six regions

- 1) Superconductivity
- 2) Mott insulator
- 3) Fermi liquid
- 4) Strange metal
- 5) Charge order
- 6) Pseudogap phase

a) ARPES — loss of spectral weight in AN regions

b) STM — FS transformation across p*

c) Hall number — loss of carrier density

d) NMR — loss of density of states

6) Pseudogap phase below T*, below p*

a) ARPES — loss of spectral weight in AN regions

6) Pseudogap phase below T*, below p*

a) ARPES — loss of spectral weight in AN regions

Nd-LSCO Linear-*T* resistivity & upturn

Collignon *et al.*, PRB **95**, 224517 (2017) Daou *et al.*, Nature Physics **5**, 31 (2009)

6) Pseudogap phase below T*, below p*

c) Hall number — loss of carrier density

Cuprate superconductors

YBCO

<u>Hall coefficient</u> : drop in carrier density at p^*

LNCMI Toulouse

90 T pulsed magnet

Badoux et al., Nature 531, 210 (2016)

Cuprate superconductors

<u>Hall coefficient</u> : drop in carrier density at p^*

Badoux et al., Nature 531, 210 (2016)

Fermi-surface reconstruction by AF order

Fermi surface at p = 0.3

Peets et al., New J. Phys. 9, 28 (2007)

Carrier density n = 1 + p - n = p

Storey, EPL 113, 27003 (2016)

Fermi surface at low *p* - ARPES and quantum oscillations

Badoux et al., Nature 531, 210 (2016)

Kunisada et al., Science 369, 833 (2020)

Drop in carrier density

PHYSICAL REVIEW B 95, 224517 (2017)SFermi-surface transformation across the pseudogap critical point of the cuprate superconductorLa1.6-xNd0.4SrxCuO4

C. Collignon,^{1,2,*} S. Badoux,¹ S. A. A. Afshar,¹ B. Michon,¹ F. Laliberté,¹ O. Cyr-Choinière,^{1,†} J.-S. Zhou,³ S. Licciardello,⁴ S. Wiedmann,⁴ N. Doiron-Leyraud,¹ and Louis Taillefer^{1,5,‡}

METALS 2) Wiedemann-Franz law in cuprates

Nd-LSCO

Nd-LSCO

Test of the WF law

PHYSICAL REVIEW X 8, 041010 (2018)

Wiedemann-Franz Law and Abrupt Change in Conductivity across the Pseudogap Critical Point of a Cuprate Communication

B. Michon,^{1,2} A. Ataei,¹ P. Bourgeois-Hope,¹ C. Collignon,¹ S. Y. Li,^{1,*} S. Badoux,¹ A. Gourgout,¹ F. Laliberté,¹ J.-S. Zhou,³ Nicolas Doiron-Leyraud,^{1,†} and Louis Taillefer^{1,4,‡}

ł

Thermal transport in quantum materials

PART I — Kxx

METALS

1) Electrons & phonons

2) Wiedemann-Franz law in cuprates

SUPERCONDUCTORS

- 1) Cuprates -d-wave + Hc2
- 2) Iron pnictides -s+- or d-wave
- 3) Ruthenate *d*-wave ?

INSULATORS

- 1) Nd2CuO4 phonons
- 2) Nd2CuO4 magnons

3) dmit – spinons ?

Superconductivity

s-wave

T dependence

Exponential at low T — gap Perfect conductor of charge, perfect of insulator of heat !

H dependence

s-wave

d-wave

Universal heat conduction

BCS Theory with *d*-wave gap: $\Delta = \Delta_0 \cos(2\phi)$

impurity effects

Finite density of delocalised states at zero energy

Fermi-liquid theory of nodal quasiparticles

$$\mathbf{E} = +\hbar\sqrt{\mathbf{v}_{F}^{2}k_{1}^{2} + \mathbf{v}_{2}^{2}k_{2}^{2}}$$

Finite residual linear term (RLT)

$$\frac{\kappa_0}{T} = \frac{k_B^2}{3\hbar} \frac{n}{c} \left(\frac{v_F}{v_\Delta} + \frac{v_\Delta}{v_F} \right) \quad d\text{-wave}$$

Cuprate superconductors

Six regions

1) Superconductivity

- 2) Mott insulator
- 3) Fermi liquid
- 4) Strange metal
- 5) Charge order
- 6) Pseudogap phase

Finite residual linear term (RLT)

$$rac{\kappa_0}{T} = rac{{k_B}^2}{3\hbar} rac{n}{c} \left(rac{v_F}{v_\Delta} + rac{v_\Delta}{v_F}
ight) \,\,\, d$$
-wave

d-wave

Low temperature (T=0 limit)

VOLUME 79, NUMBER 3

PHYSICAL REVIEW LETTERS

21 JULY 1997

Universal Heat Conduction in YBa₂Cu₃O_{6.9}

Louis Taillefer, Benoit Lussier,* and Robert Gagnon Department of Physics, McGill University, Montréal, Québec, Canada H3A 2T8

Kamran Behnia and Hervé Aubin Laboratoire de Physique des Solides (CNRS), Université Paris-Sud, 91405 Orsay, France

d-wave

YBCO

Low temperature (T=0 limit)

VOLUME 79, NUMBER 3

PHYSICAL REVIEW LETTERS

21 JULY 1997

Universal Heat Conduction in YBa₂Cu₃O_{6.9}

Louis Taillefer, Benoit Lussier,* and Robert Gagnon Department of Physics, McGill University, Montréal, Québec, Canada H3A 2T8

Kamran Behnia and Hervé Aubin Laboratoire de Physique des Solides (CNRS), Université Paris-Sud, 91405 Orsay, France

d-wave

Low temperature (T=0 limit)

VOLUME 79, NUMBER 3

PHYSICAL REVIEW LETTERS

21 JULY 1997

Universal Heat Conduction in YBa₂Cu₃O_{6.9}

Louis Taillefer, Benoit Lussier,* and Robert Gagnon Department of Physics, McGill University, Montréal, Québec, Canada H3A 2T8

Kamran Behnia and Hervé Aubin Laboratoire de Physique des Solides (CNRS), Université Paris-Sud, 91405 Orsay, France

d-wave

Field dependence — Doppler shift

$$E_H = a\hbar \sqrt{2/\pi} v_F \sqrt{H/\Phi_0}$$

 $C \sim \grt{H}$

d-wave

Field dependence — Doppler shift

 $C \sim \operatorname{Sqrt}\{H\}$

Field dependence — Doppler shift

Detection of upper critical field Hc2

YBCO

NATURE COMMUNICATIONS | 5:3280 |

ARTICLE

Received 13 Aug 2013 | Accepted 19 Jan 2014 | Published 12 Feb 2014

DOI: 10.1038/ncomms4280

80 OPEN

Direct measurement of the upper critical field in cuprate superconductors

G. Grissonnanche¹, O. Cyr-Choinière¹, F. Laliberté¹, S. René de Cotret¹, A. Juneau-Fecteau¹, S. Dufour-Beauséjour¹, M.-È. Delage¹, D. LeBoeuf^{1,†}, J. Chang^{1,†}, B.J. Ramshaw², D.A. Bonn^{2,3}, W.N. Hardy^{2,3}, R. Liang^{2,3}, S. Adachi⁴, N.E. Hussey^{5,†}, B. Vignolle⁶, C. Proust^{3,6}, M. Sutherland⁷, S. Krämer⁸, J.-H. Park⁹, D. Graf⁹, N. Doiron-Leyraud¹ & Louis Taillefer^{1,3}

Detection of upper critical field Hc2

YBCO

NATURE COMMUNICATIONS | 5:3280 |

ARTICLE

Received 13 Aug 2013 | Accepted 19 Jan 2014 | Published 12 Feb 2014

DOI: 10.1038/ncomms4280

OPEN

Direct measurement of the upper critical field in cuprate superconductors

G. Grissonnanche¹, O. Cyr-Choinière¹, F. Laliberté¹, S. René de Cotret¹, A. Juneau-Fecteau¹, S. Dufour-Beauséjour¹, M.-È. Delage¹, D. LeBoeuf^{1,†}, J. Chang^{1,†}, B.J. Ramshaw², D.A. Bonn^{2,3}, W.N. Hardy^{2,3}, R. Liang^{2,3}, S. Adachi⁴, N.E. Hussey^{5,†}, B. Vignolle⁶, C. Proust^{3,6}, M. Sutherland⁷, S. Krämer⁸, J.-H. Park⁹, D. Graf⁹, N. Doiron-Leyraud¹ & Louis Taillefer^{1,3}

Detection of upper critical field Hc2

YBCO

