2. Mott transition and superconductivity

- high-energy universality vs low-energy diversity -

N. Mott (1949)

U/W (Mottness)

Mott metal-insulator transition

Competition of kinetic energy, W, and Coulomb reputvive energy, U

Wave-like Particle-like

Musical chairs

Double occupancies are allowed or not ?

Metal or insulator

Mott transition

Competition between kinetic energy and Coulomb energy

(W:bandwidth)

(*U* : Coulomb repulsion)

Mott transition occurs at $W \sim U$, but depends on dimension and lattice geometry

1D ¹/₂-filled Hubbard models are always Mott insulators.

2D ¹/₂-filled Hubbard model on anisotropic triangular lattice

PIRG

Imada et al. JPSJ (2003)

Cluster-DMFT

Tremblay et al. PRL (2006)

Triangular lattice

Organics κ -(ET)₂X; designable and cotrollable

κ -(ET)₂Cu[N(CN)₂]Br on the verge of superconductor-insulator transition

κ -(deuterated ET)₂Cu[N(CN)₂]Br

e e e

dimer with on-site Coulomb energy → Hubbard model of hydrogen molecule

Mott transition --- Gas-liquid transition of doublon/holon fluid

κ -(ET)₂Cu[N(CN)₂]Cl

Kagawa et al., Nature 436, 534 (2005).

Mott physics high-energy universality and low-energy diversity

Mott metal-insulator transition

- competition between U and W -

Mott phase diagram

Quantum critical scaling

Time scale of fluctuations

DMFT of Hubbard model at high temperatures

Quantum Critical Transport Near the Mott Transition H. Terletska et al., PRL 107 (2011)

Phase diagram & quantum critical scaling

Furukawa et al., Nat. Commun. **9**, 307 (2018)

Near-universal quantum criticality (zv=0.5-0.7) at high energies

Furukawa et al., Nat. Phys 11 (2015) 221

Critical exponents, zv, in metal-insulator transitions

Q2D Mott

(2011)

1: Effect of disorder on Mott transition

✓ Drastic suppression of the critical endpoint = 2D Ising character

Control Enhancement of the quantum critical fluctuations

Urai *et al*, PRB **99**, 245139 (2019) Urai *et al*, PRL**124**,117204 (2020)

Perspective: from interaction-riven to disorder-driven quantum criticality

Phase diagram of QCD

Fukushima and Hatsuda, Rep. Prog. Phys. 74 (2011) 014001

Thermodynamics of Mott transition

Slope of the phase boundary tells the nature of electronic phases

Thermodynamics of Mott transition

Furukawa et al., Nat. Commun. 9 307 (2018)

Superconductivity

 $T_{\rm c}$ is enhanced

near Mott transiton near AF order

charge fluctuations Spin fluctuations

Probing pairing symmetry

¹³C NMR $1/T_1$ indicates nodal lines

 $1/T_1 \propto T^3$

 κ -(BEDT-TTF)₂Cu₂(CN)₃ κ -(BEDT-TTF)₂Cu₂(CN)₃ κ -(BEDT-TTF)₂Cu[N(CN)₂]Br Miyagawa et al., (2004) KK et al., (1996) Shimizu et al. (2006) 100 10 κ -(BEDT-TTF)₂Cu₂(CN)₃ $X = Cu[N(CN)_2]Br$ κ -(ET)₂Cu(NCS)₂ ¹³C, ¹H NMR relaxation rate under 4.3 kbar 13 C NMR 10 H=2.3T //layer Т (1/s) H₀=1.5 T H 🕀 I/TI T_C NMR relaxation rate 0.1 Flux dynamic $T_{\rm C}$ 0.1 T^3 0.1 ~ *T*3 0.01 Core-induced H_0 quasiparticles Ė. 0.01 É $H_0 // \text{layer}$ H_0 Thermally excited 0.001 quasiparticles 0.01 10 0.001 10 40 1 T(K) Temperature (K) TEMPERATURE (K)

Specific heat indicates nodal lines

cf, fully gapped SC in

Elsinger et al., PRL. 84, 6098 (2000). J. Muller *et al.*, PRB 65, 140509 (2002)

Superfluid density indicates nodal lines

 $\kappa\text{-}(BEDT\text{-}TTF)_2Cu[N(CN)_2]Br$

S. Milbradt et al., PRB.88.064501(2013)

$$\frac{n_s(T)}{n_s(0)} = 1 - \alpha T$$

Superfluid density, $n_{\rm s}$, deduced from penetration depth

$$\frac{n_{\rm s}}{m^*} = \frac{c^2}{4\pi e^2} \frac{1}{\lambda_{\rm L}^2}$$

cf, fully gapped SC in Lang et al., PRL 1992, 69, 1443

Theoretical study of gap nodes

Schmalian PRL 81. 4232 (1998)

 $d_{x^2-y^2}$ and d_{xy} are nearly degenarate Kuroki *et al.*, PRB65, 100516(R) (2002)

Powell & McKenzie, PRL 98, 027005 (2007)

Izawa et al., PRL 88, 027002 (2002).

Malone et al., PRB 82, 014522 (2010).

Imajo et al., PRB 103, L060508 (2021)

Superconducting gap: field-angle dependent measurements

Phase separation of $d_{x^2-y^2}$ and d_{xy}

 κ -(BEDT-TTF-d[3,3])₂Cu[N(CN)₂]Br

Oka et al., JPSJ 84, 064713 (2015)

Eight nodes

κ -(BEDT-TTF)₂Cu[N(CN)₂]Br

Guterding et al., PRL 116, 237001 (2016)

Superconducting fluctuations persist up to twice as high as T_c

Photo-induced non-equilibrium superconductivity at 50 K

Midinfrared (($v_{pump} \simeq 900-2000 \text{ cm}^{-1}$) pumped teraheltz-probe optical conductivity

Buzzi *et al.*, PRX **10**, 031028 (2020)

Pump frequency dependence of σ_1 and σ_2 at 50 K

Buzzi et al., PRX 10, 031028 (2020)