Summer School on exotic superconductivity Cargèse, June 13-25 th, 2022

Superconductivity and related exotic phases in organic systems

Kazushi Kanoda

Applied Physics, University of Tokyo

- 20th1. Introduction to organic conductors
molecular orbital, simple band structure, Fermi surface instability
- 21th 2. Mott transition and superconductivity high-energy universality vs low-energy diversity
- 23th 3. Spin liquid and superconductivity fate of unhappy electrons under triangular relations

Physics of condensed matter Understanding low-energy state of nucleus and electron assembly

More is *differently* different.

Without interaction, electrons behave like free waves with Fermi surface.

Fermi gas

Fermi surface is unstable to perturbation, interaction

Today

1. Introduction to organic conductors

flexible lattice, molecular orbital, band structure, Fermi surface instability

- 2. Mott transition and superconductivity Mott quantum criticality, nodal superconductivity
- 3. Spin liquid and superconductivity various types of RVB, doped quantum spin liquid, BEC-BCS crossover

Structure of organic conductors

Flexible lattice geometry

Organic materials \rightarrow flexible & controllable lattice geometry

Organic materials \rightarrow Physics of interaction and geometry

(BEDT-TTF)₂X

α -(BEDT-TTF)₂I₃

κ -(BEDT-TTF)₂Cu[N(CN)₂]Cl

Organic molecules giving (super)conductors

Me Se Se Me Me Se Se Me

TMTSF

BEDT-TSF (BETS)

BEDT-TTF (ET)

DMET

BEDO-TTF (BO)

MDT-TTF

Modification of lattice geometry \rightarrow drastic change in electronic state

β -type arrangement

θ -type arrangement

superconductivity

Electronic crystals $\int e^{-} \int e^{-}$

Electronic structure

Crystal structure is complicated in real space, but electronic structure is surprisingly simple in *k-space* !

Molecular orbital is a minimum entity for electrons

No need to get back to atomic orbitals if you work in a low energy scale

atomic orbital \rightarrow molecular orbital \rightarrow electronic band Key concept

1) The simplest non-degenarate case; hydrogen molecule

$$H = -\frac{\hbar^{2}}{2m}\nabla^{2} - \frac{e^{2}}{4\pi\varepsilon_{0}r_{a}} - \frac{e^{2}}{4\pi\varepsilon_{0}r_{b}} + \frac{e^{2}}{4\pi\varepsilon_{0}R}$$
(a)
$$\int_{\mathbb{Z}} \frac{1}{4\pi\varepsilon_{0}R} = \frac{1}{4\pi\varepsilon_{0}R}$$

Molecular orbital = linear combination of atomic orbitals

$$\varphi = c_a \phi_a + c_b \phi_b$$

$$\varepsilon_{S} \qquad \qquad \varepsilon_{2} = \frac{H_{aa} - H_{ab}}{1 - S} \quad \varphi_{2} = \frac{1}{\sqrt{2(1 - S)}} (\phi_{a} - \phi_{b})$$
antibonding orbital
$$\varepsilon_{1} = \frac{H_{aa} + H_{ab}}{1 + S} \quad \varphi_{1} = \frac{1}{\sqrt{2(1 + S)}} (\phi_{a} + \phi_{b})$$
bonding orbital

(a)
$$(A^{-32})$$

 (A^{-3})
 (A^{-3})

 $S = \int \phi_a * \phi_b d\tau$ Overlapping integral

 $H_{aa} = \int \phi_a * H \phi_a d\tau$ $H_{ab} = \int \phi_b * H \phi_a d\tau$ Transfer integral

2) degenarate case: carbon atom

3 steps in making a molecular orbital from atomic orbitals

- 1st step: intra-atomic hybridization reconstruct orbitals to fit to symmetry of coordination

- 2nd step: inter-atomic hybridization -> Chemical bond

reconstruct orbitals between neighbors like hydrogen molecule)

- 3rd step: construct the overall molecular orbitals
- i) Uniaxial 2-way coordination; *sp* hybridization

ii) Planar 3-way coordination; *sp*² hybridization

Benzene, graphene

 3^{rd} step: constructing molecular orbital; the case of benzene C_6H_6 (sp² and p_z)

iii) Tetrahedral 4-way coordination; *sp*³ hybridization

3^{rd} step: constructing molecular orbital; the case of methane CH₄ (sp³)

Molecular orbital in molecular conductors

molecular orbitals (MOs) \rightarrow formation of electronic band

complex in real space, but simple band structure

Two methods for band-structure calculations

- 1) MO calculations + tight binding approx.
- 2) First-principles calculations

κ -(BEDT-TTF)₂Cu[N(CN)₂]Cl

Band-structure calculations I; π electronic system κ -(ET)₂Cu₂(CN)₃

Band-structure calculations II; π -d electronic system (DMe-DCNQI)₂Cu

Verious kinds of Fermi surfaces \rightarrow metals expected, but.....

Fermi surface instability

Peierls instability

Most organic materials are insulators

The dawn of organic conductors

Nature 173 (1954) 168

In the past, it was taken for granted that organics are insulators.

It is because conduction band is fully occupaied.

Perylene solid exposed to Br atmosphere \Box

Getting highly conductive

Absorbed Br atoms extract electrons from Perylene

Electrical Conductivity of the Perylene-Bromine Complex

WE have found that some complexes between polycyclic aromatic compounds and halogens, in the solid state, have fairly good electrical conductivity ($\sim 1-10^{-3}$ ohm⁻¹-cm.⁻¹). Nevertheless, many of them are not stable and do not keep this property for long.

TTF-TCNQ --- epoch-making organic conductor

Coleman et al., Solid Stae Commun. 12, 1125 (1973) Conductivity maximum at 58K Highly conductive $\sigma_b(R.T.)=400 (\Omega cm)^{-1}$ 500 but 460 A metal-insulator transition at 58 K. (TTF) (TCNQ) 420 380 Low-T insulator is nonmagnetic. 340 300 $imes 10^{-3}$ $\times 10^{-4}$ TTF - TCNQ $\frac{\sigma}{\sigma_{RT}}$ 260 8 220 磁化率 (emu/mol) ピン比磁化率 (mol-1) 6 TTF 180 5 $T^{2.3}$ 140 TCNQ 100 3 2 Ľد к κ 2 60 20 20 60 100 220 260 100 200 300 0 温 度 (**K**) T (*K) FIG. 1. Temperature dependence of the conductivity TTF-TCNQのスピン磁化率^{9,10)} 6-7図 of (TTF) (TCNQ) single crystal.

Organic conductor TTF-TCNQ

 $\sigma_b/\sigma_a \sim 500$

 $\sigma_b/\sigma_c \sim 120$

Two kinds of one-dimensional chains (TTF column & TCNQ column)

Highly one-dimensional

Two one-dimensional bands in TTF columns and TCNQ columns

Charge transfer from TTF to TCNQ

TTF^{+0.59}-TCNQ^{-0.59}

Why insulating at low temperatures ?

Free electrons in one dimension

If a periodic potential of $Q=2k_F$ is applied,

 $V(x) = 2V_0 \cos(Qx)$

only $\langle k | V(x) | k \pm Q \rangle$ is not vanishing

1) In case that ε_k and $\varepsilon_{k \pm Q}$ are different more than V_0 , the energy correction is of 2nd order.

 \sim 2) In case of $\varepsilon_k \sim \varepsilon_{k+nQ}$ (degenarate), the energy correction is of 1nd order.

$$\widetilde{\varepsilon}_{k} = \frac{1}{2} \left\{ (\varepsilon_{k} + \varepsilon_{k-Q}) \pm \sqrt{(\varepsilon_{k} - \varepsilon_{k-Q})^{2} + 4V_{0}^{2}} \right\} \qquad \varepsilon_{k} = \frac{\hbar^{2}}{2m} k^{2} \qquad \varepsilon_{k-Q} = \frac{\hbar^{2}}{2m} (k-Q)^{2}$$

Electronic energy gain by the periodic potential

The electronic energy gain is obtained by an integration

$$\Delta E_{el} = \sum_{\sigma, -k_F < k < k_F} (\tilde{\varepsilon}_k - \varepsilon_k) = 4 \frac{1}{(2\pi/L)} \int_0^{k_F} (\tilde{\varepsilon}_k - \varepsilon_k) dk = \frac{2L}{\pi} \int_0^{k_F} [(\varepsilon_F - \sqrt{(\hbar v_F \kappa)^2 + V_0^2}) - (\varepsilon_F + \hbar v_F \kappa)] dk$$
$$= \frac{2L}{\pi} \int_{-k_c}^0 \left[-\sqrt{(\hbar v_F \kappa)^2 + V_0^2} - \hbar v_F \kappa \right] d\kappa = \frac{2L}{\pi} \frac{1}{\hbar v_F} \int_{-\varepsilon_c}^0 \left[-\sqrt{\varepsilon^2 + V_0^2} - \varepsilon \right] d\varepsilon = \frac{2L}{\pi} \frac{1}{\hbar v_F} \int_0^{\varepsilon_c} \left[\varepsilon - \sqrt{\varepsilon^2 + V_0^2} \right] d\varepsilon$$

By integrating it, one gets an energy gain $\Delta E_{el} \cong -\frac{L}{\pi \hbar v_F} V_0^2 \log(\frac{\varepsilon_c}{V_0})$

To produce the periodic potential, Lattice deformation is required.

elastic deformation $u(x)=u_0\cos(Qx)$ Lattice elastic energy $\Delta E_{lat} = Bu_0^2$

Assuming periodic potential is proportional to elastic deformation, $V(x) = gu(x) \longrightarrow V_0 = gu_0$

Total energy gain by lattice and potential modulations is

$$\Delta E_{el} + \Delta E_{lat} = -Au_0^2 \log(\frac{\varepsilon_c}{gu_0}) + Bu_0^2$$

where has a minimum at $u_0 \neq 0$

whic

Thus, lattice is spontaneously deformed to produce a periodic potential of $Q=2k_F$ Insulator

the Peierls transition!

Jahn-teller effect and Peierls transition

Jahn-Teller effect

(Finite system)

Peielrls transition

(infinite system)

Peierls insulator is restored to metal when temperature is raised or FS is warped (higher dimensionality)

Whole electrons at FS participate in lowering energy

Only a portion of electrons at FS do that.