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FIG. 1. Superconductivity in rhombohedral trilayer graphene (RTG). a, Crystal structure of RTG. b, Band structure of RTG for interlayer
potential �1=0, 10, 20, and 30 meV. c, Density of states, ⇢ calculated in the single particle model. d Isoenergetic contours near the valence band
maximum for �1 = 20 meV plotted over a range of �0.08 < kx,ya0 < 0.08. Contours span a range of energy of 10 meV. e, Resistivity as a
function of electron density ne and perpendicular displacement field D measured at base temperature. Two disjoint regions showing signatures
of superconductivity are observed, indicated by the open circles. f-g, Temperature and current dependence of the differential resistivity dV/dI
measured at the points in the n�D plane indicated in panel a. h Temperature dependent resistivity across SC1 measured at D =0.46V/nm. i
Rxx(T ) with T1/2 and TBKT corresponding to the data plotted in panel f.

ductivity occurs at a symmetry breaking transition. To better
understand this connection, we measure quantum oscillations
at low magnetic fields B? < 1T (Fig. 2a) in the density
range spanning SC1 at fixed D = 0.4V/nm. Several oscilla-
tion periods are visible across this range, indicating complex
Fermi surfaces. To understand these data more quantitatively,
we plot the Fourier transform of Rxx(1/B?) as a function of
f⌫ , the oscillation frequency normalized to the total carrier
density (Fig. 2b). f⌫ corresponds to the fraction of the total
Fermi sea area enclosed by the Fermi surface generating the
peak. Three regions of qualitatively different quantum oscil-
lation spectra are visible. At extreme right, a single peak at
f⌫ = .5 indicates two equal area Fermi surfaces each enclos-
ing half the total Fermi sea. We associate this regime with a
spin polarized, valley unpolarized “half-metal’ state[1] with a
simply connected Fermi sea in each valley. At the extreme left
of the plot, several oscillation peaks with density dependent
frequencies are visible. These correspond to the inner- and
outer boundaries of an annular Fermi sea with the full four-
fold spin- and valley-degeneracy (and harmonics). Intermedi-
ate between these two phases, the oscillation spectrum is more
complex, including both strong peaks at f⌫ . .5 as well as at
f⌫ < .1. We identify this regime with one or more partially
isospin polarized (PIP) phases, where the system has broken
one of the spin- or valley symmetries but is not completely
polarized into two isospin components. Comparing the quan-
tum oscillation spectrum to base temperature transport mea-
surements at B=0 (Fig. 2c) shows that SC1 occurs within the
symmetric, annular phase and adjacent to the boundary with
the PIP phase.

The appearance of superconductivity so close to a sym-
metry breaking phase transition opens the possibility of an
unconventional superconducting state. A characteristic of

many unconventional superconductors is their fragility with
respect to disorder, due to the inapplicability of Anderson’s
theorem[23]. Disorder in superconductors is quantified by
the ratio of the coherence length (⇠) to the mean free path
(`), d = ⇠0/`, with the superconductivity destroyed when
d ⇡ 1 for unconventional superconductors[5]. To assess d
in RTG, we study the magnetoresistance of both the super-
conducting and normal states. Fig. 3a-b show the dependence
of SC1 on the out-of-plane magnetic field B?. The critical
BC? is in the 10mT range. Within Ginzburg-Landau theory,
BC? is related[2] to the coherence length by 2⇡⇠2 = �0/BC

? ,
where �0 is the superconducting flux quantum. As a result,
⇠ ⇡ 150 � 250nm for SC1. ` may be estimated from the
Drude conductivity R ⇡ h

e2
1

4kf `
where h is Planck’s con-

stant, e is the elementary charge, kf is the Fermi wave vector.
Taking kf =

p
⇡ne ⇡ .25nm�1 and a normal state resistance

of R ⇡ 20⌦ produces an estimate of ` ⇡ 1µm, consider-
ably larger than ⇠ and implying d . .2. However, this esti-
mate for ` is comparable to the lateral dimensions of our de-
vice (Fig. 3c), calling into question the validity of the Drude
approach[24]. In fact, qualitative features suggest ` may be
considerably longer. Fig. 3c-d show a circuit schematic for
measuring the nonlocal magnetoresistance, which has been
used to detect transverse electron focusing in other graphene
heterostructures[3, 4]. Measured data in the regime of SC1
(Fig. 3d) show a pronounced feature near B? ⇡ .1T , con-
sistent with transverse electron focusing between the con-
tacts, which are separated by a pitch of L ⇡ 2.3µm. This
feature–which is observed across all densities in our device
(Fig. S3)—suggests ` & ⇡L ⇡ 3.5µm. Taking this estimate
for ` gives a disorder parameter d < .035. These estimates
place the superconductivity firmly in the clean limit, where
unconventional superconductivity may be expected to survive.

Rhombohedral trilayer graphene
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! = # continuous 
transitions in insulators are 

fairly well understood.

What happens when a system 
with a Fermi surface goes critical?



• Classical	and	Quantum	Criticality

• Quantum	critical	Fermi	surfaces

• Numerical	Quantum	Monte	Carlo	experiments:	
Results,	intermediate	conclusions,	and	
outstanding	mysteries
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• Emergent scale	invariance
"⃗ → $"⃗:

% "⃗ = ' "⃗ ' 0 → $!"#!%("⃗/$ )
• Emergent conformal	symmetry

• Theoretical	control	
(renormalization	group,	
Monte	Carlo	simulations)

Why do we care about critical 
phenomena?

• Universality:	divergent	correlation	length,
“microscopic”	details	don’t	matter!

Important	concept	for	quantum	field	theory,	too…



Quantum critical phenomena
• Continuous	transition	at	, = 0 as	a	function	of	
Hamiltonian	parameter
• Example:	the	transverse	field	Ising model

Ordered Disordered, = 0 Transverse	field,	ℎℎ!
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A. Partition functions and path integrals

Let us focus for now on the expression for Z . Notice
that the operator density matrix e2bH is the same as the
time-evolution operator e2iHT/\, provided we assign the
imaginary value T52i\b to the time interval over
which the system evolves. More precisely, when the
trace is written in terms of a complete set of states,

Z~b!5(
n

^nue2bHun& , (3)

Z takes the form of a sum of imaginary-time transition
amplitudes for the system to start in some state un& and
return to the same state after an imaginary time interval
2i\b . Thus we see that calculating the thermodynamics
of a quantum system is the same as calculating transition
amplitudes for its evolution in imaginary time, with the
total time interval fixed by the temperature of interest.
The fact that the time interval happens to be imaginary
is not central. The key idea we hope to transmit to the
reader is that Eq. (3) should evoke an image of quantum
dynamics and temporal propagation.

This way of looking at things can be given a particu-
larly beautiful and practical implementation in the lan-
guage of Feynman’s path-integral formulation of quan-
tum mechanics (Feynman, 1972). Feynman’s
prescription is that the net transition amplitude between
two states of the system can be calculated by summing
amplitudes for all possible paths between them. The
path taken by the system is defined by specifying the
state of the system at a sequence of finely spaced inter-
mediate time steps. Formally we write

e2bH5@e2~1/\!dtH#N, (4)

where dt is a time interval6 that is small on the time
scales of interest (dt5\/G , where G is some ultraviolet
cutoff) and N is a large integer chosen so that
Ndt5\b . We then insert a sequence of sums over com-
plete sets of intermediate states into the expression for
Z(b):

Z~b!5(
n

(
m1 ,m2 , . . . ,mN

^nue2~1/\!dtHum1&

3^m1ue2~1/\!dtHum2&^m2u•••umN&

3^mNue2~1/\!dtHun& . (5)

This rather messy expression actually has a rather
simple physical interpretation. Formally inclined readers

will observe that the expression for the quantum parti-
tion function in Eq. (5) has the form of a classical parti-
tion function, i.e., a sum over configurations expressed
in terms of a transfer matrix, if we think of imaginary
time as an additional spatial dimension. In particular, if
our quantum system lives in d dimensions, the expres-
sion for its partition function looks like a classical parti-
tion function for a system with d11 dimensions, except
that the extra dimension is finite in extent—\b in units
of time. As T!0 the system size in this extra ‘‘time’’
direction diverges, and we get a truly
d11-dimensional, effective classical system.

Since this equivalence between a d-dimensional quan-
tum system and a d11-dimensional classical system is
crucial to everything else we have to say and since Eq.
(5) is probably not very illuminating for readers not used
to a daily regimen of transfer matrices, it will be very
useful to consider a specific example in order to be able
to visualize what Eq. (5) means.

B. Example: One-dimensional Josephson-junction arrays

Consider a one-dimensional array comprising a large
number L of identical Josephson junctions as illustrated
in Fig. 1. Such arrays have recently been studied by
Haviland and Delsing (1996). A Josephson junction is a
tunnel junction connecting two superconducting metallic
grains. Cooper pairs of electrons are able to tunnel back
and forth between the grains and hence communicate
information about the quantum state on each grain. If
the Cooper pairs are able to move freely from grain to
grain throughout the array, the system is a superconduc-
tor. If the grains are very small, however, it costs a large
charging energy to move an excess Cooper pair onto a
grain. If this energy is large enough, the Cooper pairs
fail to propagate and become stuck on individual grains,
which causes the system to be an insulator.

The essential degrees of freedom in this system are
the phases of the complex superconducting order pa-

6For convenience we have chosen dt to be real, so that the
small interval of imaginary time that it represents is 2idt .

FIG. 1. Schematic representation of a 1D Josephson-junction
array. The crosses represent the tunnel junctions between su-
perconducting segments, and u i are the phases of the super-
conducting order parameter in the latter.

FIG. 2. Typical path or time history of a 1D Josephson-
junction array. Note that this is equivalent to one of the con-
figurations of a 1+1D classical XY model. The long-range cor-
relations shown here are typical of the superconducting phase
of the 1D array or, equivalently, of the ordered phase of the
classical model.
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rameter on the metallic elements connected by the
junctions7 and their conjugate variables, the charges (ex-
cess Cooper pairs, or equivalently the voltages) on each
grain. The intermediate state umj&, at time t j[jdt , that
enters the quantum partition function of Eq. (5) can
thus be defined by specifying the set of phase angles
$u(t j)%[@u1(t j),u2(t j), . . . ,uL(t j)# , where u i(t j) is the
phase angle of the ith grain at time t j . Two typical paths
or time histories on the interval @0,\b# are illustrated in
Figs. 2 and 3, where the orientation of the arrows
(‘‘spins’’) indicates the local phase angle of the order
parameter. The statistical weight of a given path, in the
sum in Eq. (5), is given by the product of the matrix
elements

)
j

^$u~t j11!%ue2~1/\!dtHu$u~t j!%&, (6)

where

H5
C
2 (

j
Vj

22EJcos~ û j2 û j11! (7)

is the quantum Hamiltonian of the Josephson-junction
array. Here û j is the operator representing the phase of
the superconducting order parameter on the jth grain,8

Vj[2i(2e/C)(]/]u j) is conjugate to the phase9 and is
the voltage on the jth junction, and EJ is the Josephson
coupling energy. The two terms in the Hamiltonian then
represent the charging energy of each grain and the Jo-
sephson coupling of the phase across the junction be-
tween grains.

As indicated previously, we can map the quantum sta-
tistical mechanics of the array onto classical statistical
mechanics by identifying the statistical weight of a
space-time path in Eq. (6) with the Boltzmann weight of
a two-dimensional spatial configuration of a classical sys-
tem. In this case the classical system is therefore a two-
dimensional X-Y model, i.e., its degrees of freedom are
planar spins, specified by angles u i , that live on a two-
dimensional square lattice. (Recall that at temperatures
above zero the lattice has a finite width \b/dt in the
temporal direction.) While the degrees of freedom are

easily identified, finding the classical Hamiltonian for
this X-Y model is somewhat more work and requires an
explicit evaluation of the matrix elements, which inter-
ested readers can find in the Appendix.

It is shown in the Appendix that, in an approximation
that preserves the universality class of the problem,10 the
product of matrix elements in Eq. (6) can be rewritten in
the form e2HXY, where the Hamiltonian of the equiva-
lent classical X-Y model is

HXY5
1
K(̂

ij&
cos~u i2u j! (8)

and the sum runs over nearest-neighbor points in the
two-dimensional (space-time) lattice.11 The nearest-
neighbor character of the couplings identifies the classi-
cal model as the 2D X-Y model, extensively studied in
the context of superfluid and superconducting films
(Goldenfeld, 1992; Chaikin and Lubensky, 1995). We
emphasize that, while the straightforward identification
of the degrees of freedom of the classical model in this
example is robust, this simplicity of the resulting classi-
cal Hamiltonian is something of a minor miracle.

It is essential to note that the dimensionless coupling
constant K in HXY , which plays the role of the tempera-
ture in the classical model, depends on the ratio of the
capacitive charging energy EC5(2e)2/C to the Joseph-
son coupling EJ in the array,

K;AEC /EJ, (9)

and has nothing to do with the physical temperature (see
the appendix). The physics here is that a large Joseph-
son coupling produces a small value of K , which favors

7It is believed that neglecting fluctuations in the magnitude of
the order parameter is a good approximation (see Bradley and
Doniach, 1984; Wallin et al., 1994).

8Our notation here is that $u(t)% refers to the configuration
of the entire set of angle variables at time slice t . The û’s
appearing in the Hamiltonian in Eq. (7) are angular coordinate
operators, and j is a site label. The state at time slice t is an
eigenfunction of these operators: cos(ûj2ûj11)u$u(t)%&
5cos@uj(t)2uj11(t)#u$u(t)%&.

9It is useful to think of this as a quantum rotor model. The
state with wave function eimju j has mj units of angular momen-
tum representing mj excess Cooper pairs on grain j . The
Cooper-pair number operator in this representation is
nj52i(]/]u j) (see Wallin et al., 1994). The cosine term in Eq.
(7) is a ‘‘torque’’ term which transfers units of conserved an-
gular momentum (Cooper pairs) from site to site. Note that
the potential energy of the bosons is represented, somewhat
paradoxically, by the kinetic energy of the quantum rotors and
vice versa.

10That is, the approximation is such that the universal aspects
of the critical behavior, such as the exponents and scaling func-
tions, will be given without error. However, nonuniversal
quantities, such as the critical coupling, will differ from an ex-
act evaluation. Technically, the neglected terms are irrelevant
at the fixed point underlying the transition.

11Notice this crucial change in notation from Eq. (7), where
j refers to a point in 1D space, not 1+1D space-time.

FIG. 3. Typical path or time history of a 1D Josephson-
junction array in the insulating phase, where correlations fall
off exponentially in both space and time. This corresponds to
the disordered phase in the classical model.
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! − dimensional	quantum	⇔
! + 1 − dimensional	classical,	size	& = ℏ/*"+ in	
the	“imaginary	time,”	, direction

Quantum critical phenomena

From	Sondhi,	Girvin,	Carini,	Shahar,	RMP	(1997)	
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Quantum criticality in 
unconventional superconductors?
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Models for metallic quantum 
criticality

# = #!"#$%&'( + #) + #%'*

Fermions
Order parameter &
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/4+…

#%'* = 6∫ (+0 (*7/0⋅3⃗ & ⋅ (+-:⃗+) 6 – “Yukawa”	
coupling



Two types of metallic quantum 
critical points

“Hot 
spot”

Antiferromagnetic	QCP	
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Two types of metallic quantum 
critical points

“Cold 
spots”

Ising-nematic	QCP	
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Two types of metallic quantum 
critical points

“Cold 
spots”

Ising-nematic	QCP	
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Metallic Quantum Criticality: 
Open Questions

• Critical	exponents?	
• Destruction	of	Fermi	Liquid	theory?	
• QCP	“masked”	by	enhanced	

superconductivity/other	order?	

Figure	from:	Max	Metlitski,	David	Mross et.	al.	(PRB,	2014)

Strongly	coupled	problem!
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Breakdown of the large $ expansion 

S-S.	Lee,	PRB	80,	165102	(2009)	

Diagrams that are “naively” subleading in 1/1 diverge! 

Correct counting of power of 1/1: all planar diagrams are 
of leading order

2(1$) 2(1!")



Weak coupling, d=2 (Ising nematic)
B(.<)6+ ≪ 1

Wilson-Fisher
E = 1,	FL	

Ω= ∝ |6|

Landau	damped	bosons,	
coherent	electrons

E = 3

Ω6<> ∼ B(.<)6? NFL?				(Σ K = Ω6<> ∼ K)
Superconductor?	(L@ ∼ Ω6<>)
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Determinant Quantum 
Monte Carlo (QMC)

Effective bosonic action: 7;A!"" ) = 7;A# ) det(P[&])
P-fermion action matrix

• Ising Nematic criticality:
det P = det(P↑)det(P↓) = det P↑

+ ≥ 0

Many actions describing QCPs in metals are sign problem free:

UV(W;D$%%) = X,  YZ W;D$%% ≥ X

• SDW criticality:
Two bands, inter-band “hot spots” :

Effective “time reversal” ⟹ sign free

EB,	Metlitski,	Sachdev,	Science	(2012)

7;A!""[)(3⃗,.)] can be negative (or complex): “Sign Problem”



Kramers' theorem: eigenvalues of M in conjugate pairs

det 6 ≥ 0: No sign problem!

Sufficient	condition	for	absence	of	sign	problem:	
C-J.	Wu	and	S-C.	Zhang,	PRB	71,	155115	(2005)	

Absence of sign problem 
for AFM QCP

CO10CH17_Yao ARjats.cls February 4, 2019 14:20

a b

Figure 2
(a) A prototypical Fermi surface of the cuprates. The hot spots are denoted by the green dots and the purple
arrow indicates the antiferromagnetic ordering wavevector (π,π ). (b) The Fermi surfaces of the two-band
model where the positions of hot spots and the Fermi velocity at hot spots are made to mimic those in the
single-band model used to describe the cuprates.

low-energy band of electrons (as shown in Figure 2a), their strategy was to design a two-band
lattice model (as shown in Figure 2b) such that the AF order-parameter !uctuation bosons scatter
from one band to another while the low-energy hot-spot physics is identical to the single-band
model.Utilizing a generalizedTRS (in both band and spin spaces), the Boltzmannweight inQMC
simulations of the two-bandmodel can be shown to be positive de"nite; namely, the QMC simula-
tions of the two-band model are sign-problem free. In converting a single-band model to the two-
band model, it is important to preserve the low-energy physics near the AFQCP by requiring the
same structure of hot spots connected by AF !uctuations and the same Fermi velocities at those hot
spots. To make it explicit, we write down the action S = S f + Sb + S f b =

∫ β
0 dτ (L f + Lb + L f b),

which describes the lattice model with two electron bands designed to mimic the AF phase tran-
sition in electron-doped cuprates with one electron band:

L f =
∑

α=x,y

∑

i, j

ψ†
α,i[(∂τ − µ)δi j − tα,i j]ψα, j ,

Lb =
1
2

∑

i

1
c2

(
d!φi
dτ

)2

+ 1
2

∑

〈i j〉
(!φi − !φ j )2 +

∑

i

[ r
2
!φ2
i + u

4
(!φ2

i )
2
]
,

L f b = λ
∑

i

ψ†
x,i(!s · !φi )ψy,i + H.c. , 6.

whereψ†
α,i = (ψ†

α↑,i,ψ
†
α↓,i) creates an electron in the α = x or y band on site i with spin polarization

s =↑ or ↓, !φi denotes the AF !uctuation boson on site i, τ is imaginary time, and β is inverse
temperature. The parameter r is used to tune the AF phase transition. The band structure using
the parameters in Reference 64 is shown in Figure 2b, which preserves the hot-spot properties in
the original one-band model (as shown in Figure 2a). The two-band action above preserves TRS
T = iσ zsyK and T 2 = −1, where !s are Pauli matrix acting on spin space, !σ are Pauli matrix acting
on band space (α = x/y), and K represents the complex conjugation. According to the principle
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“Time-reversal like” symmetry:

+#$!""[&] = det[0 1 ]

0 1(4, 5) = 7( +9) + :+
*+⋅.⃗ 1 ⋅ =⃗ ⊗ ?.

?/ = ±1: 
band index

A = B=0?/C:   A,0 = 0,  A1 = −1



Determinant Quantum 
Monte Carlo (QMC)

• Finite systems (here \ ≤ 24)

• Unbiased, numerically exact

(sources of error: statistical sampling errors, Trotter errors: 

both controlled)

• Finite temperatures (here T ≥ 0.05c ≈ e</80)

• Thermodynamic quantities, imaginary time/Matsubara 

frequency correlations (real frequency: requires analytic 

continuation)



Is superconductivity enhanced near the QCP?

Do any other types of order emerge generically near the QCP?

Yes.

SDW

SC

tuning parameter    r

SC fluctuations

nodeless
d-wave

1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

h

T

_=1.5,V=0.5,µ=ï1.0

s-wave 
SC

Nematic
metal

Disordered
metal

Generically, apparently not… 
Description of the quantum critical regime?

Weak coupling: 
Strongly renormalized bosons
weakly renormalized (FL) fermions

Stronger coupling: 
Signatures of non-Fermi
Liquid behavior

EB,	S.	Lederer,	Y.	Schattner,	S.	Trebst, Ann.	Rev.	CMP	(2019)



Results
Ising nematic critical point: 

phase diagram

1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

h

T

_=1.5,V=0.5,µ=ï1.0

Nematic

Super-
conducting

! = 1.5

QCP masked by anisotropic s-wave superconducting 
“dome”

2 2.5 3 3.5 4 4.4
0

0.5

1

1.5

1.8

h/V

T/V

Nematic

Quantum 
critical

Isotropic

Tnem

Tcross

Ising nematic transition is continuous

S. Lederer, Y. Schattner, S. Kivelson, EB, PRX (2016); PNAS (2017)

! = 0.5

! = 0



Results
Ising nematic critical point

Divergent nematic susceptibility:

F ∝
1

H + I ℎ − ℎ! + KL1

%! dependence: Landau damped 
q dependence of coefficient is complex

Low energy electronic spectrum:

M 5 =
(

2
≈ P

#2

2
Q%I(R,%)

Non-Fermi liquid behavior 
away from “cold spots”

Unexpected behavior: 
ImΣ"! )%!, + ≈ -./01

Effect of thermal fluctuations:
Klein,	Schattner,	Chubukov,	EB,	PRX	(2020)

Schattner,	Lederer,	Kivelson,	EB,	PRX	(2016)



Schattner,	Gerlach,	Trebst,	EB,	PRL	(2016);	PRB	(2017)

Results
Easy-plane O(2) AFM critical point: phase diagram

QCP covered by nodeless d-wave SC dome

H

S = 1.5 S = 2 S = 3

SDW

SC

tuning parameter    r

SC fluctuations

nodeless
d-wave

Magnetic	susceptibility	above	H!:

F ∝
1

%3 + IL1 + K ! − !! + g(H)

O(3)	AFM	transition:	similar	SC	H!,	
F has	similar	form
Bauer,	Schattner,	Trebst,	EB,	PRR	(2020)

+
−



Wang,	Schattner,	Berg,	Fernandes,	PRB	(2017)

What controls !$ near the QCP?
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�/t=0.5

-� 0 �
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�
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0

�

�/t=0.8

�hs

Vary angle between Fermi surfaces at hot spots:



Wang,	Schattner,	Berg,	Fernandes,	PRB	(2017)

What controls !$ near the QCP?

L@ variation is not due to density of states effects



Wang,	Schattner,	Berg,	Fernandes,	PRB	(2017)

What controls !$ near the QCP?

L@ near antiferromagnetic QCP vs. g/c ∼ sinkI(:

TEliash
c = (0.14 sin ✓hs) t

TQMC
c = (0.13 sin ✓hs) t

New, non-SC QCP with h45 → j? 
Schlief,	Lunts,	S-S.	Lee	(PRX,	2017);	Lunts,	Albergo,	Lindsey	(arXiv 22’)



CDW near antiferromagnetic QCP?

X.	Wang,	Y.	Wang,	Schattner,	EB,	R.	Fernandes	(PRL,	2018)

AFM is attractive for both CDW and superconductivity
Metlitski,	Sachdev	(PRB,	2011);	Efetov, Meier,	Pepin	(Nat.	Phys.	2013);	

Wang,	Chubukov (PRB,	2014)
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the CO susceptibility shows a very weak enhancement
near the QCP. Furthermore, near the onset of SC, the CO
susceptibility is even suppressed with respect to its non-
interacting value, signaling a strong competition between
these two states already in the fluctuating regime. This
happens even though the SU(2) symmetry is preserved
locally at the hot spots. The fragility of the CO-SC de-
generacy implies that CO near an AFM-QCP is not a
universal phenomenon, but instead requires a fine-tuned
band structure that goes beyond just hot-spot properties.
We also investigate the wave-vector for which the CO sus-
ceptibility is maximal. When CO and SC are degenerate,
the wave-vector is diagonal, in agreement with the ana-
lytical approximations. However, once CO and SC are no
longer degenerate, the wave-vector tends to change from
diagonal to axial as the AFM-QCP is approached. This
is consistent with theoretical proposals that axial CO is
favored over the diagonal one if the anti-nodal region of
the Brillouin zone is gapped [30, 31]. Finally, we discuss
the implications of our results to materials that display
putative AFM-QCPs and their relevance to understand
CO in the cuprates.

The spin-fermion model is a low-energy model de-
scribing electrons interacting via the exchange of AFM
fluctuations. In its two-band version (whose physics
has been argued to be similar to the one-band version
[32]), the model is described by the following action,
S = S + S� + S�, defined on a two-dimensional square
lattice:

S =

Z

⌧,rr0

X

i=c,d

[(@⌧ � µ) �rr0 � ti,rr0 ] 
†
i,r↵ i,r0↵

S� =
1

2

Z

⌧,r


1

v2
s

(@⌧�)2 + (r�)2 + r0�
2 +

u

2

�
�2

�2
�

S� = �

Z

⌧,r
eiQAFM·r� ·

�
 †

c,r↵�↵� d,r� + h.c.
�

(1)

Here,
R
⌧,r is shorthand for

R
d⌧

P
r, ⌧ 2 [0,�) is the

imaginary time, and � = 1/T is the inverse temperature.
The action S describes the fermionic degrees of freedom,
with the operator  i,r↵ annihilating an electron of spin
↵ at site r and band i. Summation over ↵,� is implied.
There are two different bands, labeled c and d. The band
dispersion is parametrized by the chemical potential µ
and the hopping amplitudes ti,rr0 . Here, we consider only
nearest-neighbor hopping and set tc,x = td,y ⌘ tx and
tc,y = td,x ⌘ ty to enforce the system to remain invariant
under a 90� rotation followed by a c $ d exchange. The
action S� describes the spin degrees of freedom, with the
bosonic field � denoting the antiferromagnetic order pa-
rameter with ordering wave-vector QAFM = (⇡,⇡), and
� denoting Pauli matrices. The parameter r0 tunes the
AFM transition to T = 0 at r0 = rc, whereas vs and
u describe the stiffness of AFM temporal and amplitude
fluctuations, respectively. To save computational time,

d1

c1

QCO

c1

c2

d1

d2

QAFM

µ = 0

(Q0, 0)

(0, Q0)

µ

tx
= �

p
3

(a)

(b) (c)

Figure 1. (a) Schematic Fermi surface of the spin-fermion
model with two bands (c, dashed line, and d, solid line). Hot
spots are marked by solid symbols. Two pairs of hot spots
(c1, d1) and (c2, d2) are highlighted to illustrate the relation-
ship between the AFM wave-vector QAFM and the CO wave-
vector QCO. The band dispersions used in our QMC calcu-
lations are shown in (b) (particle-hole symmetric dispersion,
µ = 0, with ty = tx/2) and (c) (particle-hole asymmetric dis-
persion, µ/tx = �

p
3, with ty = 0). Changing µ tunes the

CO wave-vector QCO = (Q0, Q0) since Q0 = 2arccos �µ
2tx

.

we follow previous works and consider easy-plane anti-
ferromagnetism, i.e � = (�x,�y) [26, 32, 33]. The action
S� couples spins and fermions via the parameter �. The
two-band structure of the model ensures the absence of
the sign problem in our simulations [24].

The fermionic, magnetic, and superconducting proper-
ties of this model have been thoroughly studied recently,
revealing a SC dome surrounding the QCP [26, 33]. In
particular, the SC order parameter � was found to have
a “d-wave” symmetry, i.e. to change its sign between the
two bands: � =

R
⌧,r i�y

↵� ( c,r↵ c,r� �  d,r↵ d,r�) . The
CO order parameter ⇢ investigated here also has oppo-
site signs in the two-bands (and is thus analogous to the
d-wave bond CO in the one-band version of the model):

⇢ =

Z

⌧,r
eiQCO·r�0

↵�

⇣
 †

c,r↵ c,r↵ �  †
d,r↵ d,r�

⌘
. (2)

where QCO is the CO wave-vector. Analytical stud-
ies of the spin-fermion model found a special symmetry
relating the SC and CO order parameters under an ap-
proximation that focuses on the hot spots of the model,
i.e. the Fermi surface points separated by QAFM = (⇡,⇡)
[3–5]. In the two-band version of the model, each hot
spot of a given pair (ci, di) is located on a different
band, as shown in Fig. 1. According to [3, 4, 34],
the hot-spots model with linearized dispersions has an
emergent symmetry that rotates the SC order parame-

l = 0
(P-H symmetric)
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the CO susceptibility shows a very weak enhancement
near the QCP. Furthermore, near the onset of SC, the CO
susceptibility is even suppressed with respect to its non-
interacting value, signaling a strong competition between
these two states already in the fluctuating regime. This
happens even though the SU(2) symmetry is preserved
locally at the hot spots. The fragility of the CO-SC de-
generacy implies that CO near an AFM-QCP is not a
universal phenomenon, but instead requires a fine-tuned
band structure that goes beyond just hot-spot properties.
We also investigate the wave-vector for which the CO sus-
ceptibility is maximal. When CO and SC are degenerate,
the wave-vector is diagonal, in agreement with the ana-
lytical approximations. However, once CO and SC are no
longer degenerate, the wave-vector tends to change from
diagonal to axial as the AFM-QCP is approached. This
is consistent with theoretical proposals that axial CO is
favored over the diagonal one if the anti-nodal region of
the Brillouin zone is gapped [30, 31]. Finally, we discuss
the implications of our results to materials that display
putative AFM-QCPs and their relevance to understand
CO in the cuprates.

The spin-fermion model is a low-energy model de-
scribing electrons interacting via the exchange of AFM
fluctuations. In its two-band version (whose physics
has been argued to be similar to the one-band version
[32]), the model is described by the following action,
S = S + S� + S�, defined on a two-dimensional square
lattice:
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Here,
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⌧,r is shorthand for
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P
r, ⌧ 2 [0,�) is the

imaginary time, and � = 1/T is the inverse temperature.
The action S describes the fermionic degrees of freedom,
with the operator  i,r↵ annihilating an electron of spin
↵ at site r and band i. Summation over ↵,� is implied.
There are two different bands, labeled c and d. The band
dispersion is parametrized by the chemical potential µ
and the hopping amplitudes ti,rr0 . Here, we consider only
nearest-neighbor hopping and set tc,x = td,y ⌘ tx and
tc,y = td,x ⌘ ty to enforce the system to remain invariant
under a 90� rotation followed by a c $ d exchange. The
action S� describes the spin degrees of freedom, with the
bosonic field � denoting the antiferromagnetic order pa-
rameter with ordering wave-vector QAFM = (⇡,⇡), and
� denoting Pauli matrices. The parameter r0 tunes the
AFM transition to T = 0 at r0 = rc, whereas vs and
u describe the stiffness of AFM temporal and amplitude
fluctuations, respectively. To save computational time,
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Figure 1. (a) Schematic Fermi surface of the spin-fermion
model with two bands (c, dashed line, and d, solid line). Hot
spots are marked by solid symbols. Two pairs of hot spots
(c1, d1) and (c2, d2) are highlighted to illustrate the relation-
ship between the AFM wave-vector QAFM and the CO wave-
vector QCO. The band dispersions used in our QMC calcu-
lations are shown in (b) (particle-hole symmetric dispersion,
µ = 0, with ty = tx/2) and (c) (particle-hole asymmetric dis-
persion, µ/tx = �

p
3, with ty = 0). Changing µ tunes the

CO wave-vector QCO = (Q0, Q0) since Q0 = 2arccos �µ
2tx

.

we follow previous works and consider easy-plane anti-
ferromagnetism, i.e � = (�x,�y) [26, 32, 33]. The action
S� couples spins and fermions via the parameter �. The
two-band structure of the model ensures the absence of
the sign problem in our simulations [24].

The fermionic, magnetic, and superconducting proper-
ties of this model have been thoroughly studied recently,
revealing a SC dome surrounding the QCP [26, 33]. In
particular, the SC order parameter � was found to have
a “d-wave” symmetry, i.e. to change its sign between the
two bands: � =

R
⌧,r i�y

↵� ( c,r↵ c,r� �  d,r↵ d,r�) . The
CO order parameter ⇢ investigated here also has oppo-
site signs in the two-bands (and is thus analogous to the
d-wave bond CO in the one-band version of the model):

⇢ =

Z

⌧,r
eiQCO·r�0

↵�

⇣
 †

c,r↵ c,r↵ �  †
d,r↵ d,r�

⌘
. (2)

where QCO is the CO wave-vector. Analytical stud-
ies of the spin-fermion model found a special symmetry
relating the SC and CO order parameters under an ap-
proximation that focuses on the hot spots of the model,
i.e. the Fermi surface points separated by QAFM = (⇡,⇡)
[3–5]. In the two-band version of the model, each hot
spot of a given pair (ci, di) is located on a different
band, as shown in Fig. 1. According to [3, 4, 34],
the hot-spots model with linearized dispersions has an
emergent symmetry that rotates the SC order parame-

l ≠ 0
Perfect nesting

3

ter, � = i�y
↵� ( c1,↵ c2,� �  d1,↵ d2,�), onto the CO or-

der parameter, ⇢ = �0

↵�

⇣
 †

c1,↵ c2,� �  †
d1,↵ d2,�

⌘
. Note

that this CO has a diagonal wave-vector QCO ⌘ (Q0, Q0)
which separates two hot spots belonging to different pairs
but to the same band (see Fig. 1). Our goal here is
to investigate: (i) to what extent does this symmetry
play a role in the vicinity of an AFM-QCP, and (ii) more
broadly, is CO a generic feature near such a QCP. To this
end, we perform a systematic investigation of the SC and
CO susceptibilities in the two-band spin-fermion model.

We choose as our starting point the parameters for
which the symmetry of the low-energy hot-spots model
discussed above is promoted to an exact lattice symme-
try. This corresponds to the case where the c and d bands
are particle-hole symmetric, i.e. µ = 0. This allows us to
systematically study the effect of breaking the particle-
hole symmetry at the lattice level. For µ = 0, the elec-
tronic action for a given AFM field configuration – corre-
sponding to the S and S� terms of the action in Eq. (1)
[3]– is invariant under a rotation in particle-hole space,
 i,r↵ ! eiQAFM·r

⇣
i�y
↵�

⌘
 †

i,r� . This invariance can be
seen by constructing a four-dimensional spinor that com-
bines rotated and non-rotated operators at each band,

 i,r ⌘
⇣
 i,r",  i,r#, eiQAFM·r †

i,r#, �eiQAFM·r †
i,r"

⌘T
.

In this representation, when µ = 0, the Hamilto-
nian commutes with all all SU(2) generators ⌧ in
particle-hole space. Importantly, the SC and CO or-
der parameters form a three-component vector � ⌘
(Re�, Im�, ⇢) in this space, which couples to the elec-
trons as

P
r eiQAFM·r� · (�0 ⌦ ⌧ )

⇣
 †

c,r c,r � †
d,r d,r

⌘
.

Note that QCO = QAFM = (⇡,⇡), enforcing ⇢ to be real.
As a result, an enhancement of the SC susceptibility also
implies an equally strong enhacement in the CO channel,
since the two order parameters are related by rotations
in the SU(2) particle-hole space, and the Hamiltonian is
invariant under these rotations. This symmetry is anal-
ogous to the degeneracy between SC and CO observed
in the half-filled negative-U Hubbard model [35]. Here,
however, both the SC and CO have a d-wave symmetry.

To demonstrate the existence of this SU(2) symmetry
for µ = 0, we perform QMC simulations on a square
lattice of size L = 12. Additional details of the QMC
procedure can be found elsewhere [26]. All energies are
expressed in terms of the hopping tx ⌘ t and the pa-
rameters are set to vs = 2t, u = t�1, �2 = 4t, and
ty = t/2, resulting in the Fermi surface illustrated in
Fig. 1(b) (the results are the same for other values of
ty, see Supplementary Material). Fig. 2(a) shows the
SC susceptibility �SC, the CO susceptibility �diag

CO
with

diagonal wave-vector QCO = (Q0, Q0), where Q0 = ⇡,
and the CO susceptibility �axial

CO
with axial wave-vector

QCO = (Q0, 0) / (0, Q0) as a function of the distance
to the AFM-QCP for �t = 12. The position rc of the
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T/t
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1
2�SC
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CO

1 2 3 4 5 6
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7
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1
2�SC

�diag
CO

�axial
CO

� �

(b)(a)

Figure 2. SC susceptibility �SC (circles) and CO suscepti-
bilities for diagonal wave-vector QCO = (Q0, Q0), �diag

CO
(tri-

angles), and axial wave-vector QCO = (Q0, 0) / (0, Q0), �axial

CO

(inverted triangles), as function of: (a) the distance r0� rc to
the AFM-QCP (fixed temperature �t = 12); and (b) temper-
ature T/t (fixed r0 = rc at the AFM-QCP). The particle-hole
symmetric dispersion used here is that of Fig. 1(b).
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Figure 3. (a) SC (circles) and diagonal CO (triangles) sus-
ceptibilities, normalized by their non-interacting values, as a
function of the distance to the QCP r0 � rc and for a fixed
temperature �t = 10. The dispersion is represented in Fig.
1(c), with different values of the wave-vector Q0 (shown in
the inset). Panel (b) shows the temperature dependence of
the inverse susceptibilities at the AFM-QCP (r0 = rc) for
µ/t = �

p
2 (Q0 = ⇡/2).

AFM-QCP was determined via the AFM susceptibility
[32]. The degeneracy between diagonal CO and SC is
evident, as well as the enhancement of both susceptibil-
ities at the AFM-QCP. The fact that �SC = 2�diag

CO
is

because the complex SC order parameter has two com-
ponents whereas the real CO order parameter has one. In
contrast, the axial CO susceptibility remains small and
nearly unaffected by the proximity to the QCP. Fig. 2(b),
which shows the behavior at the QCP, confirms that the
degeneracy is present at all temperatures.

We now proceed to investigate whether there is a rem-
nant near-degeneracy between SC and CO when particle-
hole symmetry is broken (µ 6= 0). In this case, al-
though there is no lattice SU(2) symmetry, an approx-
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Transport
Ising nematic critical point

kl

S.	Lederer,	Y.	Schattner,	EB,	S.	Kivelson,	PNAS	(2017)

“Resistivity proxy”: kl ≡ 6#$7("/1)
1;7$("/1) ≈

∫%
& =>>$? >

2 ∫%
& =>? >

$

If 2(%) is a Lorentzian: 56 = 6#$

Qualitatively similar results for AFM QCP



Weak coupling, d=2 (Ising nematic)
B(.<)6+ ≪ 1

Wilson-Fisher
E = 1,	FL	

Ω= ∝ |6|

Landau	damped	bosons,	
coherent	electrons

E = 3

Ω6<> ∼ B(.<)6? NFL?				(Σ K = Ω6<> ∼ K)
Superconductor?	(L@ ∼ Ω6<>)

!

0



Method

Memory matrix method: 
identify “slow variables” 
Review:	S.	Hartnoll,	A.	Lucas,	
S.	Sachdev	(2016)

In our case: 
Mahajan,	Barkeshli,	Hartnoll (2013)

n@A = ∫ QpBqC
DqC

…

0@A,@A'(Ω) =
Im⟨ṅ@A|ṅ@A'⟩

Ω

Memory matrix: 

where ṅ@A = B[9, n@A]

Kinetic equation 
including multi-particle 
scattering processes 

Xioayu Wang	and	EB,	PRB	(2019)



Umklapp processes*

At sufficiently low ', ( ∼ '& (even at QCP) 
Maslov,	Yudson,	Chubukov (2011)

'1

Behavior at intermediate temperatures? ' > '(
(Expect LJ ∼ nJ K)

* Compensated metal (like BaFe+ As5;3P3 +): LJ = 0
(no Umklapp necessary!)

Xioayu Wang	and	EB,	PRB	(2019)



Analytical transport calculation: 
coherent electron regime

⇢xx
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• Non-zero resistivity due to Umklapp proceeses
• Quasi-linear resistivity for , > ,$ (,$ ∼ :$ 8)



Specific heat: 
Ising nematic QCP
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Broad “coherent electron regime” 
above ,9:; ∼ ,<
• ; ∼ ;∗, q.p. weight < ∼ 1
• Non-Fermi liquid scattering rate 
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Figure 1. c�T as a function of temperature at various h values, for di↵erent coupling constants: (a) ↵ = 1.5, V = 0.5, and (b)

↵ = 1, V = 1. In both cases, µ = −1. The solid line is c�T of the non-interacting tight binding model. The inset shows the phase
diagram in the (h,T ) plane. For ↵ = 1.5, the blue line shows the superconducting Tc vs. h. For ↵ = 1, we estimate Tc � 0.02 at
h ≈ hc.

action strength between spins on nearest-neighbor bonds
��i, j� ; �k, l�� is given by V > 0, h sets the transverse field
strength, and ↵ is the dimensionless coupling strength
between the pseudospins and the fermions. Physically,
the pseudospins can originate from a purely electronic
interactions via Hubbard-Stratonovich transformation, or
from bosonic degrees of freedom such as phonons. More
importantly, the model is designed to host an Ising ne-
matic critical point, which separates an ordered phase
where the C4 rotational symmetry of the lattice is sponta-
neously broken from a symmetric phase. The transition
can be tuned by the large transverse field h, and remains
continuous down to low temperature [32, 41].

We use the ALF package [42], a general implementation
of the auxiliary field quantum Monte Carlo algorithm [43,
44], to solve the Hamiltonian from above. The negative-
sign problem is absent due to time-reversal symmetry for
each space-time configuration of ⌧zi,j . Global updates of
the boson fields, that are constructed according to the
Wolf algorithm [45], are used to shorten both the auto-
correlation and thermalization times. An artificial orbital
magnetic field that couples oppositely to spin up and spin
down electrons, corresponding to one flux quantum in the
entire system, is applied to reduce finite size e↵ects [32,
46]. For more details of the QMC implementation, see
Refs. [32, 47].

The the specific heat c may be evaluated from (i) the
numerical derivative of the energy, c = d�H��dT , or (ii) the
fluctuations of the energy, c = �2

(�H2
�−�H�2), where � =

1�T . In our model, we found that approach (i) converges
much faster than (ii) [47].

In the following, we focus on two parameter sets,
(↵ = 1.5, V �t = 0.5) and (↵ = 1, V �t = 1). The chemi-

cal potential is fixed to µ�t = −1. We point out that there
is a van Hove singularity in the band dispersion at µ = 0.
In the supplementary material [47] we present results for
↵ = 1, µ�t = −0.5, where e↵ects of the proximity to the
van Hove singularity are more pronounced. We use t as
the unit of energy in the remainder.

Results.— We begin by discussing the phase diagram
for the model of Eq. (1). To locate the nematic phase
transition, we calculate the nematic susceptibility,

�(h,T ) =
1

L2�
i,j

ˆ �

0
d⌧�Ni(⌧)Nj(0)� , (2)

with the nematic order parameter Ni = ∑j ⇣ij⌧
z
ij , where

⇣ij = 1�4 for rij = ±x̂, ⇣ij = −1�4 for rij = ±ŷ, and ⇣ij = 0
otherwise. We present the inverse susceptibility as a
function of temperature in Fig. 2 for three transverse
field values h and two coupling strengths ↵. The nematic
fluctuations are enhanced as the temperature is reduced.
�−1 saturates for the larger values of h, which indicates a
nematic-disordered ground state, while the susceptibility
nearly diverges (�−1 → 0) for the lowest transverse field
strength signalling a nematically ordered phase. The
critical transverse field hc(T ) at a given temperature T
is determined by a finite size scaling analysis, assuming
classical 2D Ising critical exponents [47], and the resulting
phase diagram is shown in the inset of Fig. 1 for the two
di↵erent values of ↵. The quantum critical point is located
at hc = limT→0 hc(T ). The superconducting transition
temperature Tc, extracted from a scaling analysis of the s-
wave pairing susceptibility [47], also appears in the insets
of Fig. 1 for ↵ = 1.5. For ↵ = 1, the maximal Tc is smaller
than 0.025 [47] and is not shown.

We now turn to the specific heat c(T ) at and away from



Summary
Metallic quantum criticality is accessible via sign 
problem-free Quantum Monte Carlo simulations.

• QCP “preempted” by high-+) superconductor! 

• Generic properties:

• Quantum critical regime above +):
• Rapid growth of correlations
• Breakdown of Fermi liquid behavior
• Anomalous transport

• What’s missing…
• No “competing orders” 

other than SC
• No “Pseudogap”

,-
ℏ/0"

Thank you.


