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Figure	3:	Candidate	Spin	Liquid	Materials.	Crystal	structures	of	(a)	k-(ET)2Cu2(CN)3,	(b)	
herbertsmithite	,	and	(c)	a-RuCl3.		In	(a),	the	ET	dimers	(top)	form	a	triangular	lattice	(with	the	S	
=	½	degree	of	freedom	per	dimer	represented	by	red	arrows).		These	ET	molecules	are	
sandwiched	by	Cu2(CN)3	planes	(bottom).		Here,	Cu	is	in	blue,	S	in	yellow,	C	in	black,	and	N	in	
red.		In	(b),	Cu	(blue)	forms	kagome	layers	(top)	that	are	interconnected	(bottom)	by	Zn	(gray),	
with	O	in	red	(shown	in	top	only).		In	(c),	Ru	octahedra	(top)	form	honeycomb	layers	that	are	
weakly	coupled	(bottom),	with	Cl	in	green.	
 
  

(a)		k-(ET)2Cu2(CN)3 (b)		ZnCu3(OH)6Cl2 (c)		a-RuCl3
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LETTE RS TO THE EDITOR

An enriched BMF6 proportional counter, surrounded with
2 inches of parafnn was placed immediately behind the water
container. The delayed neutrons from the reaction were counted
by this counter, the pulses from which were amplified by an
Atomic Instrument Company linear arnplifier and recorded as a
function of time by a Brush pen recorder connected through the
scaling elements of a Tracerlab auto sealer. Selection of the scaling
factor provided either fast or slow recording. The water was bom-
barded by neutrons from the LiF or the C source for about 20 sec.,
after which the cyclotron was shut off. The delayed neutron
intensity was recorded. A half-life of 4.5+1.0 sec. vas found,
indicating the existence of N'v.
The delayed neutron count without the water target was about

one-third of that observed when the water target was in position.
This high background is probably due to the cooling water in the
cyclotron itself. However, when neutrons of lower maximum
energy from C were used to bombard the water, the number of
delayed neutrons was reduced by a factor of about 15 because of
the smaller number of high energy neutrons from the C source.
It should be noted that the reaction energy of the 0"(n,p)N'v
process is 8 Mev.
The reaction 0"(p,p}N'v is unlikely, even though the isotopic

content of 0' is five times that of 0'v in normal water, because the
cross section for a (y,p) process is, in general, much smaller than
that for an (n, p) process. However, to test the possibility of the
formation of Niv by an Ois(& p)Niv process in our experimental
conditions, a four-inch lead shield was placed between the LiF
and the mater target. The reduction of about 35 percent in the
number of delayed neutrons from the water target due to the
absorption of primary neutrons in the lead was the same as the
measured absorption of the primary neutron beam itself. This
indicates that the number of atoms of N' formed is proportional
to that of the incident neutrons and that neutrons rather than
y-rays are responsible for the production of N".
The average cross section for the process has been roughly

estimated to be 10~6 cm2. This figure may be off by a factor of 10,
but it does serve to illustrate that the order of magnitude of the
cross section of the process is comparable v ith other (n, p) reac-
tions.
It is suggested that the reaction 0"(y,p)Niv may be induced

in a similar fashion where strong p-ray sources of over 16 Mev
are available.
* Partially assisted by the Joint Program of ONR and AEC.
~ Knable, I.awrence, Leith, Moyer, and Thornton, Phys. Rev. V4, 1217A

(1948).
'-' L. W. Alvarez, Phys. Rev. V4, 1217A (1948).
3 L. W. Alvarez, Phys. Rev. VS, 1127 (1949).
4 E. Hayward, Phys. Rev. IS, 917 (1949)."W. E. Chupp and E. M. McMillan, Phys. Rev. V4, 1217A (1948).' Sun, Jennings, Shoupp, and Allen, Phys. Rev. VS, 1302A (1949).
v H. A. Bethe, Elementary Nuclear Theory (John Wiley and Sons, Inc. ,

New York, 1947), except that the mass of neutron is taken as 1.00899.

New Radioactive Isotopes of Dysprosium~
B. H. KETELLE

Oak Ridge National Laboratory, Oak Ridge, Tennessee
September 6, 1949

LTHOUGH two isomers of Dy"' have been established by the
studies of several investigators, & no activities have been as-

signed definitely to other dysprosium isotopes.
A sample of dysprosium oxide 2 highly purified by ion exchange

techniques, was irradiated with slow neutrons in the Oak Ridge
National Laboratory reactor. The decay curve of the induced
activity was resolved into three components with periods of 138
min. , 81 hr. , and 146 days. The 138-min. activity is known to
belong to Dy'". Feather analysis of aluminum absorption curves
showed that there were two beta-groups mith maximum energies
of 0.4 Mev and 1.8 Mev associated with the decay of the 81-hr.
activity. The 144-day activity appeared to decay largely by
orbital electron capture.

Because of the difriculty of preparing pure rare earths and the
prevalence of high activation cross sections among these elements,
it is essential to make chemical separations before assigning
activities. Therefore an ion exchange column separation' was per-
formed on another sample of the dysprosium oxide which had been
irradiated for five months. The conditions were such that holmium,
dysprosium, and terbium would be separated. The presence of the
27.3-hr. activity of Ho'" was demonstrated. Since the dysprosium
which was irradiated was known to be extremely pure, it was
suspected that the holmium activity was produced by double
neutron capture as represented by either or both of the following
two series of reactions:

n~ P n~ /-
Dye b4 —Dy165 —Ho165 —Hoi66 ~Erj 66 (1)

138 min. 27.3 hr.
ny ny P P

Dy16& -Dyl 65 Dy166~Ho& 66 Er166 (2)
27.3 hr.

The dysprosium fraction from which the holmium had been
removed showed growth rather than decay. Therefore it appears
certain that at least part of the holmium activity observed had
been formed according to Eq. (2). In order to verify this hypothesis
a second chemical separation of holmium from the dysprosium
was made. Again Ho"' was identified. The analysis of, the growth
curve of the holmium deficient dysprosium sample showed that an
activity with an 80-hr. half-life was decaying to a daughter whose
half-life was 27 hr. Furthermore, it was possible to obtain an
aluminum absorption curve on the freshly purified dysprosium.
Feather analysis of this curve showed that the 80-hr. activity
emits a beta whose maximum energy is 0.4 Mev. After equilibrium
had been established between the 80-hr. parent and the 27-hr.
daughter, an aluminum absorption curve indicated the presence
of the 0.4-Mev beta and also a 1.8-Mev beta. Since both the half-
life and the energy of the daughter activity agree with those of
Ho"', we conclude that the 80-hr. parent is Dy"'.
After the 80-hr. activity had decayed out of these dysprosium

samples, there was a residual activity with a half-life of 140+10
days. Since absorption curves in copper and tantalum show that
this activity decays by orbital electron capture, it must belong to
Dy"v or Dy'". The decay has not been followed suKciently long
to ascertain whether there is a longer lived activity of Tb~5v present.
From the ratio of 80-hr. activity to 140-min. activity in a sample

of dysprosium which had undergone no chemical separation after
irradiation, an approximate value of the neutron activation cross
section of Dy"' was computed to be 5000 barns.
A detailed discussion of these studies is being prepared for pub-

lication in the near future.
*This document is based on work performed under Contract Number

W-7404 eng 26 for the Atomic Energy Project at Oak Ridge National
Laboratory.' Summarized by G. T. Seaborg and I. Perlman, Phys. Rev. 20, 585
(1948),

~ The author wishes to thank Mr. D. H. Harris who kindly supplied this
extremely pure material.

3 B. H. Ketelle and G. E. Boyd, J. Am. Chem. Soc. 69, 2800 (1947).

Detection of Antiferromagnetism by Neutron
Di8raction*
C. G. SHULL

Oak Ridge National Laboratory, Oak Ridge, Tennessee
AND

J. SAMUEL SMART
Naval Ordnance Laboratory, White Oak, Silver SPring, Maryland

August 29, 1949

'KO necessary conditions for the existence of ferromagnetism
are: (1) the atoms must have a net magnetic moment due

to an unfilled electron shell, and (2) the exchange integral J
relating to the exchange of electrons between neighboring atoms
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Antiferromagnetism. The Triangular Ising Net
G. H. WANNIER

Bell Telephone Laboratories, 3flrray Hill, Em Jersey
(Received February 11, 1950)

In this paper the statistical mechanics of a two-dimensionally infinite set of Ising spins is worked out for
the case in which they form either a triangular or a honeycomb arrangement. Results for the honeycomb
and the ferromagnetic triangular net differ little from the published ones for the square net (Curie point
with logarithmically infinite specific heat}. The triangular net with antiferromagnetic interaction is a sample
case of antiferromagnetism in a non-fitting lattice. The binding energy comes out to be only one-third of
what it is in the ferromagnetic case. The entropy at absolute zero is finite; it equals

2 &/3
S(0)=R— ln(2 cosco}des=0.3383R.

The system is disordered at all temperatures and possesses no Curie point.

I. INTRODUCTION
l 'HANKS to the work of Kaufman and Onsager' '

we are now in possession of a method of solving
exactly a certain number of cooperative problems in
physics. We can obtain the thermal properties and some
order-parameters for a two-dimensional periodic struc-
ture whose members are "spins" capable of existing in
two states; these spins interact with their nearest
neighbors only, according to the mode put forward by
Ising. 4 In addition to the general theory, the papers
quoted contain also its application to the rectangular
Ising net which is shown in Fig. 1. The main feature of
their results is the temperature singularity. The singu-
larity is mainly known at this time through its mani-
festation in the specific heat curve. For a complete
study of this "Curie point" transition one wouM like
to know also the magnetic properties. These quantities
are not available in the literature at this time although
the spontaneous magnetization has been calculated. '
In the original calculations the Ising model was

thought of as ferromagnetic. Within recent years, how-
ever, antiferromagnetism has received considerable
attention, and one might wish to think of the model
in terms of this new application. The salient features
of antiferromagnetism are described in an article of
Bizette. ' The specific heat resembles that of ferromag-
netic materials; the susceptibility curves resemble the
specific heat curves somewhat, having a pronounced
maximum at the Curie point. Both these features can
be accounted for qualitatively on the basis of nearest
neighbor interaction. The specific heat calculation of
Onsager' actually does not distinguish at all between
ferromagnetism and antiferromagnetism, owing to the
well-known symmetry property which applies to all
lattices having a- and P-sites with all O.-sites surrounded
by P-sites and vice versa.

A closer study of antiferromagnetism removes to a
great extent this superficial similarity. It may be seen
from the work of Hulthen' that the difference between
the quantum and Ising interactions is much more
drastic in the antiferromagnetic than the ferromagnetic
case. Specifically, a linear chain of quantum spins
whose interaction is JZe; e,+& has a lowest energy
which is 1.775 times that of a corresponding set of
Ising spins. This situation is in contrast to the ferro-
magnetic case and by itself removes any hope of a
simple analogy. In addition, the antiferromagnetic
materials MnO, MnS, MnTe, FeO crystallize in the
NaCl structure; this gives the paramagnetic metal
ions a face-centered cubic arrangement. Such an ar-
rangement of sites does not divide into n- and P-sites
in the manner described above. In consequence, even
for an Ising antiferromagnet the thermal properties are
not trivally related to some "equivalent" ferromagnetic
arrangement.
This paper is one in a series of related studies on these

non-trivial aspects of antiferromagnetism. We will
derive in it the properties of an antiferromagnetic
triangular Ising net (Fig. 2). This arrangement is a two-
dimensional analog of the face-centered cubic structure,
in that it is also a lattice into which antiferromagnetism
does not fit. The Kaufman-Onsager calculation can be
carried out for it and full results obtained. We shall

' L. Onsager, Phys. Rev. 65, 117 (1944).' Kaufman, Phys. Rev. 76, 1232 (1949).' B. Kaufman and L. Onsager, Phys. Rev. 76, 1244 (1949).' K. Ising, Zeits. f. Physik 31, 253 (1925).' B. Kaufman (private communication).
6 H, Bizette, thesis, Paris, Masson et Cie, pp. 62—96,

FIG. 1. Rectangular Ising net. The circles indicate the location of
the spins and the straight lines the interactions.

7 L. Hulthen, Arkiv f, Mat. Astr. o. Fys. 26A, No. 11 (1938}.
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summary 
1. The velocity constant for the &acetone al- 

cohol decomposition in the presence of dilute so- 
dium hydroxide has been measured at  5' inter- 
vals from 0 to  50". 

2. The constancy of ratio of velocity constant 
to sodium hydroxide concentration has been 
confirmed over a limited concentration range 
a t  25'. 

3. The energy of activation, calculated from 
the Arrhenius equation for a series of tempera- 
ture intervals, has been shown to be a function of 
temperaturl: well outside the limits of error. 
E,,, increases consistently from a value of 15,850 
cal. at  5" to 17,250 a t  32.5 and then decreases by 
about 400 cal. a t  45'. 

4. On the addition of 18.5% of methyl alcohol 
Eact increases by over 1700 cal. but the general 
character of the EaCt-T curve remains little 
changed to  30". 

5. The corresponding B values from the inte- 
grated Arrhenius equation, In k = 2.3 B - (Eact/ 
RT), both in water and the methyl alcohol solu- 
tion parallel these Ea,, values and furnish experi- 
mental evidence for abandoning the unfortunate 
term "temperature independent constant" for 
this quantity. 

6.  The data show that the collision theory is 
inadequate and that the entropy of activation is 
an important quantity in considering solution re- 
actions. 
NEW YORK, N. Y. RECEIVED AUGUST 15, 1935 
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The Structure and Entropy of Ice and of Other Crystals with Some Randomness of 
Atomic Arrangement 

BY LINUS PAULING 

Investigations of the entropy of substances a t  
low temperatures have produced very important 
information regarding the structure of crystals, 
the work of Giauque and his collaborators being 
particularly noteworthy. For example, the ob- 
served entropy of crystalline hydrogen shows that 
even a t  very low temperatures the molecules of 
orthohydrogen in the crystal are rotating about 
as freely as  in the gas;' subsequent to this dis- 
covery the phenomenon of rotation of molecules in 
crystals was found to be not uncommon. Also 
the entropy values of carbon monoxide2 and 
nitrous oxide3 show that in crystals of these sub- 
stances the molecules are not uniquely oriented, 
but have instead a choice between two orienta- 
tions, presumably the opposed orientations CO 
and OC or NNO and ONN along fixed axes. It is 
pointed out in this note that the observed entropy 
of ice at  low temperatures provides strong support 
for a particular structure of ice, and thus gives an 
answer to  a question which has been extensively 
discussed during the past few years. 

It has been generally recognized since the dis- 
(1) W. F. Oiauque and H. L. Johnston, TIIIS JOURNAL, 60, 3221 

(1928); L. Pauling, Phys. Rev., 86, 430 (1930). 
(2) J. 0. Clayton and W. F. Giauque, Tms JOURNAL, 64, 2610 

(1932). 
(3) R. W. Blue and W. F. Giauque, ibid. ,  67, 991 (1936); K.  

Clusius, Z .  Elcklrochem., 40, 99 (1934). 

covery of the hydrogen bond4 that the unusual 
properties of water and ice (high melting and 
boiling points, low density, association, high di- 
electric constants, etc.) owe their existence to 
hydrogen bonds between water molecules. The 
arrangement of oxygen atoms (but not of hydro- 
gen atoms) in crystals of ice is known from x-ray 
studies;6 it is not a close-packed arrangement (as 
of sulfur atoms in the high-temperature form of 
hydrogen sulfide), but a very open one, like that 
of the silicon atoms in high-tridymite. Each 
oxygen atom in ice is tetrahedrally surrounded by 
four other oxygen atoms a t  the distance 2.76 A., 
and it has been assumed that it is bonded to these 
atoms by hydrogen bonds, the number of hydrogen 
atoms being just that required to place one hydro- 
gen atom between each pair of oxygen atoms. 
(Similarly in high-tridymite there is an oxygen 
atom between each pair of silicon atoms; we 
might say that each silicon atom is attached to 
four others by oxygen bonds.) 

The question now arises as to whether a given 
hydrogen atom is midway between the two oxygen 

(4) W. M. Latimer and W. H. Rodebusb, THIS JOURNAL, 42, 
1419 (1920). 

(5) D. M. Dennison, Phys. Reo., 17, 20 (1921); W. H. Bragg, 
Puoc. Phys. SOC. (London), 34, 98 (1922); U'. H. Barnes, Proc. 
Roy.  SOC. (London), Al26, 670 (1929). 

1008 JAMES C. THOMPSON

It is certain that the long tail of the peak extends
far beyond the critical 6eld, so that there is extra Aux
in the sample after the sample has become normal
conducting according to the Silsbee hypothesis. London'
found a similar tail for the resistance approach to
normal resistance when the transition is made with
current alone in zero field. Theoretical description of
the paramagnetic Qux behavior beyond the peak is not
available.
In conclusion one notes the similarity in behavior of

the superconducting metals tested, and the agreement
with Meissner's theory, at least beyond the threshold.

These facts support the argument that the eGect is a
property of the intermediate state. The fast response
time coupled with the reversible nature of the transition
again emphasizes the dependence on current and field,
not on method of measurement or history of the
specimen.
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Ordering and Antiferromagnetism in Ferrites
P. W. ANDERsON

Bell TelePhorle Laboratories, 3&rray Hill, Sew Jersey
(Received January 9, 1956)

The octahedral sites in the spinel structure form one of the anomalous lattices in which it is possible to
achieve essentially perfect short-range order while maintaining a Gnite entropy. In such a lattice nearest-
neighbor forces alone can never lead to long-range order, while calculations indicate that even the long-
range Coulomb forces are only 5% eii'ective in creating long-range order. This is shown to have many
possible consequences both for antiferromagnetism in "normal" ferrites and for ordering in "inverse"
ferrites.

I. LATTICE OF OCTAHEDRAL SITES
HE ferrites are a class of oxides of iron-group
metals, many of them of technical importance as

ferromagnets, which crystallize in the spinel structure
or structures closely related to it. The ideal ferrite has
the formula ABs04 (e.g., NiFes04) and the smaller
metal ions A and 8 occupy certain interstices between
the large oxygen ions, which latter are arranged in an
approximation to the cubic close-packed structure.

F&G. 1. Photograph of a model of the spinel lattice. The dark
balls are oxygen; the tetrahedral sites are connected to their
neighboring oxygens by four diagonal bonds, the octahedral by
six vertical and horizontal ones.

The structure is shown in Fig. 1. The distortion of
the lattice of oxygen ions is such that a cell of 32 oxygens
has cubic symmetry again. There are, for each oxygen,
one interstice surrounded by an octahedron of oxygen
and two surrounded by a tetrahedron; half of the former
and only one-eighth of the latter are occupied by metal
ions. This means that in the unit cell there are 8 "tetra-
hedral sites" and 16 "octahedral sites. "
In a "normal" spinel, the 8 A ions occupy the 8 tetra-

hedral sites, the 168 ions the octahedral ones. In an
"inverse" spinel, 8 of the 8 ions occupy the tetrahedral
sites, the other 8 and the 8 A's occupying the octahedral
sites. Ferrites are known which range all the way from
purely normal to purely inverse. We are here interested
in two problems, both having to do with ordering on the
octahedral sites: (a) the problem of atomic ordering in
inverse ferrites; (b) in normal ferrites with small or no
magnetic moments on the A ions, the problem of anti-
ferromagnetic ordering of spins.
To attack these problems we need to study carefully

only the crystal lattice of the magnetic ions, particu-
larly that of the octahedral sites. The occupied tetra-
hedral sites form a diamond-type lattice, the octahedral
sites (see Fig. 2) a somewhat more complex cubic
lattice which could be generated from this tetrahedral
site lattice by displacing it through half the cube edge
and then placing an atom at the center of each bond,
' T. F. W. Barth and E. Posnjak, Z. Krist. 82, 325 (1932).
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Insulating Spin Glasses 
Jacques Villain 
D6partement de Recherche Fondamentale, Laboratoire de Diffraction Neutronique, 
Centre d'Etudes Nucl6aires de Grenoble, Grenoble, France 

Received September 2l, 1978 

The possibility of obtaining spin glasses by addition of impurities in an antiferromagnetic 
insulator is examined. Dipolar interactions are briefly considered but the attention is 
focussed on Heisenberg systems. Equivalence with the Edwards-Anderson model is 
derived in a theoretical case. Experimental realisations, such as quasi-one dimensional 
systems, and spinels, are reviewed. A weak concentration of non-magnetic impurities can 
give rise to a new state that we call "semi spin glass", in which a ferromagnetic 
component coexists with a transverse, spin glass component. An important case is when 
the pure system has a high ground state degeneracy (cooperative paramagnet). Non- 
magnetic impurities or other forms of disorder can transform it into a spin glass. 

I. Introduction 

Metallic spin glasses have been extensively studied by 
many experimental groups in recent years. Available 
data can be found, for instance, in review articles by 
Binder [1] and Souletie [2]. These spin glasses are 
dilute solid solutions of magnetic ions interacting 
through the conduction electrons of a non-magnetic 
matrix. The interactions are well understood and can 
be controlled by changing the concentration. These 
advantages are compensated by a drawback: it is not 
always easy to separate the part of conduction elec- 
trons from that of localised moments, for instance in 
the specific heat [3, 4] and in spin dynamics [5, 6 I. It 
would therefore be of interest to have more experi- 
mental data on insulating spin glasses. So far as we 
know, the only extensive study, due to Kurtz [71, is 
devoted to CsMnFeF 6 and similar systems. 
In dilute alloys, the spin glass character is the result 
of a competition between ferromagnetic and anti- 
ferromagnetic interactions [1, 2] according to the 
Rudermann-Kittel formula. Simultaneous occurrence 
of ferro- and antiferromagnetic interactions is not 
extremely common in insulators. When it takes place, 
the competition is generally not strong enough to 
result in a spin glass. An important exception is when 
dipole interactions are the dominant mechanism, but 
the resulting freezing temperature is extremely low. 
This case will be very briefly discussed in Chap. II. 
We believe that the best way to obtain an insulating 

spin glass is to use frustrated systems with only anti- 
ferromagnetic interactions. This possibility was al- 
ready suggested by De Seze [8], and more recently by 
Aharony [9] for certain Ising systems. It seems, how- 
ever, that all experts are not convinced that compet- 
ing antiferromagnetic interactions can produce spin 
glasses, therefore a theoretical model will be de- 
scribed in Chap. III. This model is reduced by an 
appropriate transformation to a system with both 
ferro- and antiferromagnetic interactions - the so- 
called Edwards-Anderson model (E.A.) [10]. Actual 
realisations of spin glasses are studied in the follow- 
ing Sections. It is shown that certain systems are 
particularly appropriate to spin glass formation when 
some disorder is introduced: for instance nearly one- 
dimensional systems (Chap. IV) and systems with a 
high ground state degeneracy (Chap. V). Effect of 
impurities in Heisenberg (or XY) antiferromagnets 
with low ground state degeneracy is considered in 
Chap. VI. As an application, the case of spinels is 
considered in Chap. VII. 
Quantum effects are disregarded throughout this pa- 
per. We are mainly concerned with three-dimen- 
sional, classical spins described by a Heisenberg 
Hamiltonian: 

- Z  J js sj. (1) 
U 
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nating the kinetics of water release and
mobility helping to reduce the energetic
costs of correlated, local, side-chain move-
ments (1). In effect, the proposed mecha-
nisms ofantigen-antibov union show strik-
ing similarities to the induced fit mecha-
nisms often implied in enzyme-substrate
(15, 20) and DNA-protein interactions (24).
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to reexamine the idea of the "resonating
valence-bond" (RVB) state (5).

Early doubts about the nature of the
ground state of the antiferromagnetic Hei-
senberg Hamiltonian

= J2si (1)

of Hulthen (6) and Marshall (7) (where ij
is the spin at site i and innj indicates summa-
tion over nearest neighbors i andj) seemed
to have been laid to rest by arguments from
quantum fluctuations of spin waves in the
NMl state (8) in >1 cdimension, and by
experimental observations of antiferromag-
netism. In 1973, however, Anderson (5)
proposed that, at least in the triangular two-
dimensional antiferromagnet for S = 1/2,
and perhaps in other cases, the ground state
might be the analog of the precise singlet in
the Bethe solution of the linear antiferro-
magnetic chain (6). In both cases, the zeroth
order energy of a state consisting purely of
nearest neighbor singlet pairs is more nearly
realistic than that of the Neel state, and I
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The Resonating Valence Bond State in La2CuO4
and Superconductivity

P. W. ANDERSON

The oxide superconductors, particularly those recently discovered that are based on
La2CuO4, have a set of peculiarities that suggest a common, unique mehanism: they
tend in every case to occur near a metal-insulator transition into an odd-electron
insulator with peculiar magnetic properties. This insulating phase is proposed to be the
long-sought "resonating-valence-bond" state or "quantum spin liquid" hypothesized
in 1973. This insulating magnetic phase is favored by low spin, low dimensionality,
and magnetic frustration. The preeistig magnetic singlet pairs ofthe insulating state
become charged superconducting pairs when the insulator is doped sufficiently
strongly. The mechanism for superconductivity is hence predominantly electronic and
magnetic, although weak phonon interactions may favor the state. Many unusual
properties are predicted, especiafly of the insulating state.
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2D Heisenberg S=1/2 Kagome AF

	
	
Figure	3:	Candidate	Spin	Liquid	Materials.	Crystal	structures	of	(a)	k-(ET)2Cu2(CN)3,	(b)	
herbertsmithite	,	and	(c)	a-RuCl3.		In	(a),	the	ET	dimers	(top)	form	a	triangular	lattice	(with	the	S	
=	½	degree	of	freedom	per	dimer	represented	by	red	arrows).		These	ET	molecules	are	
sandwiched	by	Cu2(CN)3	planes	(bottom).		Here,	Cu	is	in	blue,	S	in	yellow,	C	in	black,	and	N	in	
red.		In	(b),	Cu	(blue)	forms	kagome	layers	(top)	that	are	interconnected	(bottom)	by	Zn	(gray),	
with	O	in	red	(shown	in	top	only).		In	(c),	Ru	octahedra	(top)	form	honeycomb	layers	that	are	
weakly	coupled	(bottom),	with	Cl	in	green.	
 
  

(a)		k-(ET)2Cu2(CN)3 (b)		ZnCu3(OH)6Cl2 (c)		a-RuCl3
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Eclassical = zJSi ⋅ Sj/2 EQuantum = − 3J/8
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Figure 1.

Figure 1. Cartoon representation of the magnetic excitations in a spin-1/2 (Heisenberg)

antiferromagnetic chain and overview of the neutron scattering results for CuSO4·5D2O.

(a)Fully polarized (saturated) state. The creation of a magnon by inelastic scattering of a neutron

can be imagined as a single spin flip. The Zeeman energy prevents any growth of the flipped sec-

tion that propagates like a single entity. This magnon can classically be visualized as a spin wave,

a coherent precession of the local spin expectation value around the field direction. (b) Zero-

magnetic field state. Snapshots of large antiferromagnetically correlated regions of the ground

Best Understood Spin Liquid:   
S=1/2 Heisenberg AF chain 

Deconfined spinons as elementary excitations in zero field 
Spin waves in field-polarized state

5

98(1)% of the full response function in the thermodynamic limit) have become available28, and

we demonstrate in the following that our experimental results confirm the abstract spinon concept

accurately on the quantitative level.

We performed inelastic neutron scattering experiments on large single crystals of CuSO4·5D2O,

cooled to ⇠100 mK in a dilution refrigerator. There are two Cu2+ sites in the elementary unit

cell, Cu1 at [0,0,0], and Cu2 at [1
2 ,

1
2 ,0], which each provide a localized spin 1/2, Fig. 2e. All

antiferromagnetic exchange is overcome by the Zeeman energy in a modest magnetic field of

5 T. In this fully polarized phase, we observe discrete excitations, well-described by a resolution-

convoluted d�function, the signature of a magnon, Figs. (1c). We observe a dispersive branch

with 0.517(9) meV bandwidth along a
⇤ and a minimum at h = 1/2, Fig. 2a. This dispersive

branch reflects the principal antiferromagnetic exchange interaction between neighbouring Cu1

spins which hence form chains along a. Along (0,k,k), perpendicular to the chain direction, the

bandwidth is smaller than the experimental error of 0.007 meV, Fig. 2b, and evidences negligible

coupling between individual spin chains. A second branch at energy 2g2µBHS
z, grey in Fig.2, is

flat both along (h,0,0) (bandwidth 0.048(6) meV) and (0,k,k) (bandwidth <0.007 meV). As a

function of magnetic field, the dispersive branch emerges from zero energy at the saturation field

strength, while the energy of the flat branch is directly proportional to the magnetic field, Fig. 2.

The field dependence and vanishing bandwidth of the flat branch reveal an essentially decoupled

spin site (Cu2), where the neutron excites the local spin from the lower to the upper Zeeman level.

The Zeeman-shifts of the dispersive and of the flat branch are slightly different, as expected for the

Landé-g-factors g1 and g2 of two different crystallographic sites. This scenario is also confirmed

by our spin-wave calculations, which take into account various potential exchange paths sketched

in Fig. 2e (cf. Supplementary Materials), and provide the dominant exchange between the Cu1

spins as Ja = 0.252(17) meV.

At zero magnetic field, the Zeeman levels of the decoupled Cu2 spins are not split, the flat

branch has energy zero, and only the chain-forming Cu1 spins contribute to the inelastic spec-

trum. We observe a sine-shaped lower boundary of the continuous scattering, with maximum

onset-energy 0.402(2) meV at h = 1
4 . This experimentally determined spinon bandwidth agrees

within 2% error with the theoretical prediction p
2 Ja = 0.406(7) meV, with Ja determined from the

bandwidth in the fully polarized phase. We thus confirm experimentally that the energy of spinon

excitations is quantum renormalized upwards by a factor p
2 compared to classical magnons45.

M. Mourigal et al, Nature Physics, 9, 435, 2013
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Figure 1. Cartoon representation of the magnetic excitations in a spin-1/2 (Heisenberg)

antiferromagnetic chain and overview of the neutron scattering results for CuSO4·5D2O.

(a)Fully polarized (saturated) state. The creation of a magnon by inelastic scattering of a neutron

can be imagined as a single spin flip. The Zeeman energy prevents any growth of the flipped sec-

tion that propagates like a single entity. This magnon can classically be visualized as a spin wave,

a coherent precession of the local spin expectation value around the field direction. (b) Zero-

magnetic field state. Snapshots of large antiferromagnetically correlated regions of the ground



2D Heisenberg S=1/2 Kagome AF
 

 
 
Figure 4: Key Data on Spin Liquid Candidates. (a) Spin continuum of herbertsmithite from 
inelastic neutron scattering [S(q,w) at 1.6 K in the HK0 plane: upper, 6 meV; middle, 2 meV; 
lower, 0.75 meV] (72), (b) field dependence of the spin gap of Zn-barlowite from nuclear 
magnetic resonance [upper: 19F Knight shift versus temperature for various magnetic fields; 
lower: magnetic field dependence of the spin gap, D, with dashed lines the expected behavior for 
S=½ and S=1 excitations] (81), and (c) quantized plateau in the thermal Hall effect of a-RuCl3 
[kxy/T versus magnetic field: upper, 3.7 K; middle 4.3 K; lower, 4.9 K] (92). 
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Gapped or Ungapped in Herbertsmithite?
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in 3D on Tetrahedra

Spin Ice: Ferromagnetic interactions combined with local Ising anisotropy leads to 
6-fold degeneracy on a single tetrahedron - macroscopic degeneracy on 3D crystal  

M.J. Harris, S.T. Bramwell, D.F. McMorrow, T. Zeiske, and K.W. Godfrey, PRL 79 2554 (1997) 
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A key physical distinction among the candidates is their degree of 
charge localization — this is important for understanding the mech-
anism of the spin-liquid behaviour. The kagomé materials can be 
regarded as strong Mott insulators, in which the electrons constituting 
the spins are approximately localized to a single atomic orbital. This can 
be seen from the small exchange couplings (proportional to the Curie–
Weiss temperature, ΘCW) relative to the Mott charge gap, which is of the 
order of electronvolts (eV) in such copper oxides. For these materials, a 
microscopic description purely in terms of Heisenberg spins is justified. 
By contrast, for the organic compounds and Na4Ir3O8, the exchange 
energies are larger and the charge gaps are smaller. These materials are 
therefore weak Mott insulators, in which the electronic spins are much 
less well localized, so charge fluctuations may have an important role. 
In the organic compounds, the Hubbard repulsion, U (Box 2), which 
sets the Mott gap, is much smaller than in inorganic compounds, owing 
to the extended nature of the molecular orbital constituting each spin. 
In Na4Ir3O8, U is likewise reduced because 5d orbitals are sig nificantly 
larger than 3d ones. The fact that metal–insulator transitions can be 
induced by physical pressure or chemical pressure in all three cases 
(for the two organic compounds and Na4Ir3O8)43,44, and the fact that 
in κ-(BEDT-TTF)2Cu2(CN)3 no clear Mott gap is seen spectroscopi-
cally45, is direct experimental evidence that these materials are weak 
Mott insulators. The applicability of a Heisenberg spin description to 
these materials is thus open to question.

Thermodynamic studies of these materials are also important because 
they reveal the spectrum of low-energy states, an abundance of which 
is expected in frustrated sys tems. At very low temperatures, the func-
tional form of the specific heat and sometimes the spin (or magnetic) 
susceptibility can distinguish between QSLs. The general thermody-
namic features of the materials are remarkably similar. In all cases in 
which it has been measured, the magnetic specific heat shows a peak 
well below the Curie–Weiss temperature46–49, indicating that significant 
spin entropy is maintained above this peak temperature. This specific 
heat then gradually decreases on further lowering of the temperature, in 
a manner that can roughly be fitted to a quadratic behaviour, Cv ≈ AT2, 
where Cv is molar specific heat at constant volume and A is a constant. 
This non-exponential form clearly indicates the absence of an energy 
gap. However, some caution is in order before interpreting this as char-
acteristic of QSLs: such approx imately quadratic behaviour of Cv is com-
mon in frustrated magnets, even ones that are classical and for which 
QSL physics is clearly irrelevant50. At very low temperatures, the can-
didate QSL materials generally show a linear behaviour, Cv ≈ γT, where 
γ is the Sommerfeld coefficient (refs 46–49, 51), which varies widely 
(between 1 and 250 mJ K−2 mol−1). This is evidence of a large density of 
low-energy states.

Ideally, the spin susceptibility, χ, is a useful measure of the available 
low-energy spin excitations. All of the candidate QSL materials also show 
a large Pauli-like paramagnetic susceptibility, χ0, in the zero-temperature 
limit. This susceptibility is smallest for the organic compounds: for these, 
χ0 ≈ 3 × 10−4 e.m.u. mol−1 (refs 52, 53), whereas it is 3–10 times larger 
for the inorganic compounds41,42,46,47,49. Before these values of χ0 can be 
interpreted as additional evidence for gapless excitations in QSLs, it is 
important to consider the influence of spin–orbit coupling. Spin–orbit 
coupling generally leads to a non-zero χ0 value irrespective of the pres-
ence or absence of an energy gap. An empirical indicator of the impor-
tance of spin–orbit coupling is the Wilson ratio, which is defined as

 4π2kB
2χ0

 
 R = _________  (1)
 3(gμB)2γ 

and should be, at most, of order 1 in the absence of strong ferro magnetic 
tendencies or spin–orbit coupling. Because all of the candidate QSL 
materials are strongly anti ferromagnetic, the ferromagnetic interpreta-
tion is untenable. In fact, most (but not all) QSL theories, in the absence 
of spin–orbit coupling, predict that R << 1. By contrast, the measured 
Wilson ratios for all of the QSL candidates in Table 1 are significantly 

larger than 1, with the exception of ZnCu3(OH)6Cl2 (for which an 
estimate of the intrinsic γ value, uncontaminated by impurities, is 
not available) and κ-(BEDT-TTF)2Cu2(CN)3. The value of the Wilson 
ratio for ZnCu3(OH)6Cl2 is probably suppressed by the high degree 
of disorder. The extremely large value for Na4Ir3O8 (R  = 70) indicates 
very strong spin–orbit effects, which are not surprising given the large 
atomic number of iridium.

The most direct evidence for a lack of magnetic ordering comes from 
local probe measurements, by using techniques such as NMR and muon 
spin resonance, in which local fields resulting from static moments affect 
the nuclear or muon spins and can be readily detected by their influence 
on the muon spins. Such measurements have confirmed the absence of 
local static moments down to T = 32 mK in κ-(BEDT-TTF)2Cu2(CN)3 
(ref. 52), T = 1.37 K in EtMe3Sb[Pd(dmit)2]2 (ref. 54) and T = 50 mK in 
ZnCu3(OH)6Cl2 (ref. 55). How ever, in Cu3V2O7(OH)2•2H2O, magnetic 

Figure 2 | Spins, artificial magnetic fields and monopoles in spin 
ice. a, A ground-state configuration of spins is shown in a pyrochlore 
lattice. The spins obey the constraint of the ice rules that mandates two 
inward-pointing spins and two outward-pointing ones on each tetrahedron. 
b, For the same lattice type, some of the loops of ‘magnetic flux’ are shown 
(red lines), as defined by the mapping of spins to an artificial magnetic field. 
c, For the same lattice type, a monopole (green) and antimonopole (red) 
are shown. These are created by flipping the ‘string’ of spins connected by 
the yellow line (compare with the spins in b). For simplicity, the particles 
themselves are not depicted. Note that the spins on the tetrahedron 
containing a monopole (antimonopole) orient three-in, one-out (three-out, 
one-in), violating the ice rules.
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where Qa denotes the total magnetic charge at site a in the diamond
lattice, and rab is the distance between two sites. The finite ‘self-
energy’ u0/2 is required to reproduce the net nearest-neighbour inter-
action correctly. Equation (2)—which is derived in detail in the
Supplementary Information—is equivalent to the dipolar energy
equation (1), up to corrections that are small everywhere, and vanish
with distance at least as fast as 1/r5.

We consider first the ground states of the system. The total energy
is minimized if each diamond lattice site is net neutral, that is, we
must orient the dumbbells so thatQa5 0 on each site. But this is just
the above-mentioned ice rule, as illustrated in Fig. 2. Thus, one of the
most remarkable features of spin ice follows directly from the dumb-
bell model: the measured low-T entropy agrees with the Pauling
entropy (which follows from the short-distance ice rules), even
though the dipolar interactions are long-range.

We now turn to the excited states. Naively, the most elementary
excitation involves inverting a single dipole / dumbbell to generate a

local net dipole moment 2m. However, this is misleading in a crucial
sense. The inverted dumbbell in fact corresponds to two adjacent
sites with net magnetic charge Qa56qm562m/ad—a nearest-
neighbour monopole–antimonopole pair. As shown in Fig. 2e, the
monopoles can be separated from one another without further viola-
tions of local neutrality by flipping a chain of adjacent dumbbells. A
pair of monopoles separated by a distance r experiences a Coulombic
interaction,{m0q

2
m

!
4prð Þ, mediated by monopolar magnetic fields,

see Fig. 3.
This interaction is indeed magnetic, hence the presence of the

vacuum permeability m0, and not 1/e0, the inverse of the vacuum
permittivity. It takes only a finite energy to separate the monopoles
to infinity (that is, they are deconfined), and so they are the true
elementary excitations of the system: the local dipolar excitation
fractionalizes.

By taking the pictures from the dumbbell representation seriously,
we may be thought somehow to be introducing monopoles where
there were none to begin with. In general, it is of course well known
that a string of dipoles arranged head to tail realizes a monopole–
antimonopole pair at its ends17. However, to obtain deconfined
monopoles, it is essential that the cost of creating such a string of
dipoles remain bounded as its length grows, that is, the relevant string
tension should vanish. This is evidently not true in a vacuum (such as
that of the Universe) where the growth of the string can only come at
the cost of creating additional dipoles. Magnetic materials, which
come equipped with vacua (ground states) filled with magnetic
dipoles, are more promising. However, even here a dipole string is
not always a natural excitation, and when it is—for example, in an
ordered ferromagnet – a string of inverted dipoles is accompanied
by costly domain walls along its length (except, as usual, for one-
dimensional systems18), causing the incipient monopoles to remain
confined.

The unusual properties of spin ice arise from its exotic ground
states. The ice rule can be viewed as requiring that two dipole strings
enter and exit each site of the diamond lattice. In a typical spin-ice
ground state, there is a ‘soup’ of such strings: many dipole strings
of arbitrary size and shape can be identified that connect a given pair
of sites. Inverting the dipoles along any one such string creates a
monopole–antimonopole pair on the sites at its ends. The associated
energy cost does not diverge with the length of the string, unlike in
the case of an ordered ferromagnet, because no domain walls are
created along the string, and the monopoles are thus deconfined.

We did not make reference to the Dirac condition19 that the fun-
damental electric charge e and anymagnetic charge qmust exhibit the
relationship eq5 nh/m0 whence any monopoles in our universe must
be quantized in units of qD5 h/m0e. This follows from the monopole
being attached to a Dirac string, which has to be unobservable17. By
contrast, the string soup characteristic of spin ice at low temperature

a b

c

e

d

Figure 2 | Mapping from dipoles to dumbbells. The dumbbell picture
(c, d) is obtained by replacing each spin in a and b by a pair of opposite
magnetic charges placed on the adjacent sites of the diamond lattice. In the
left panels (a, c), two neighbouring tetrahedra obey the ice rule, with two
spins pointing in and two out, giving zero net charge on each site. In the right
panels (b, d), inverting the shared spin generates a pair of magnetic
monopoles (diamond sites with net magnetic charge). This configuration
has a higher net magnetic moment and it is favoured by an appliedmagnetic
field oriented upward (corresponding to a [111] direction). e, A pair of
separated monopoles (large red and blue spheres). A chain of inverted
dipoles (‘Dirac string’) between them is highlighted in white, and the
magnetic field lines are sketched.
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Figure 3 | Monopole interaction. Comparison of the magnetic Coulomb
energy {m0q

2
m

!
4prð Þ (equation (2); solid line) with a direct numerical

evaluation of the monopole interaction energy in dipolar spin ice (equation
(1); open circles), for a given spin-ice configuration (Fig. 2e), as a function of
monopole separation.
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Fig. 1.3. (a) Specific heat and (b) entropy data for Dy2Ti2O7 from Ref. [7], com-
pared with Monte Carlo simulation results [30] for the dipolar spin ice model, with
J/3 = −1.24 K and 5D/3 = 2.35 K. Two temperature regimes can be identified.
(i) At a temperature T much higher than the peak temperature, Tpeak ∼ 1.24 K,
the system is in the paramagnetic regime and is weakly correlated and individual
tetrahedra do not obey the “two-in/two-out” ice rules. As the temperature ap-
proaches Tpeak, the ice-rules become progressively fulfilled. The Schottky-like peak
in C arises when the temperature drops below the energy gap between the ice-rule
obeying states and the excited “three-in/one-out” states and “all-in/all-out” states.
(ii) As T drops below Tpeak, the spin flip rate drops exponentially rapidly [50] as the
system settles in an ice-rule obeying state with two spins “in” and two spins “out”
on each tetrahedron. There is no phase transition between the high temperature
paramagnetic state (T > Tpeak) and the spin ice regime at T < Tpeak. The spin ice
regime can therefore be described as a collective paramagnet [14]. (Figure reprinted
with permission from B. C. den Hertog and M. J. P. Gingras, Phys. Rev. Lett.
84, 3430 (2000). Copyright 2000 by the American Physical Society.)

the value of D = µ0(gLµB〈Jz〉)2/(4πrnn
3) is estimated at D ∼ 1.4 K [30, 37, 38],

which is comparable to the experimentally measured Curie-Weiss temperature θCW

in these materials. Even if one was assuming that the nearest-neighbor exchange
J ∼ θCW ∼ 1 K, one is still in a regime where the dipolar interactions are com-
parable in magnitude to the nearest-neighbor exchange interactions [7,30,37]. This
observation raises a paradox. The existence of a ground state with extensive degen-
eracy should in principle results from the underconstraints that the Hamiltonian
imposes on the spin configurations that minimize the classical ground state en-
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is unclear whether the interactions which cause the quasi-
degeneracy (here the long-range magnetic dipolar inter-
action [9]), should at the same time prevent any ordering
down to zero temperature and cause zero-point entropy.
The dipolar interaction is itself FM at nearest neighbor, and
is thus prone to spin ice correlations. However, a priori
one might expect that its longer range component should
lift the nearest neighbor degeneracy and induce the selec-
tion of an ordered state within the ice-rules manifold. We
show in this Letter that this is precisely the case. Specifi-
cally, the dipolar spin ice model with long-range interac-
tions does possess a unique ground state (apart from trivial
global symmetry operations) which develops at very low
temperature. However, for local dynamical processes
(such as single spin fluctuations), the development of
this ground state is completely dynamically inhibited be-
cause of high energy barriers separating quasidegenerate
ice-rules states. We explore here the low temperature
ordering properties of dipolar spin ice by taking advantage
of “loop moves” incorporated into a standard Metropolis
Monte Carlo algorithm, a method considered previously
for two-dimensional square ice models [13]. Such moves
allow one to explore degeneracy lifting effects within
the ice-rules manifold in an efficient manner, something
which is not possible via single spin flip dynamics. We
present here strong numerical evidence for a phase tran-
sition at low temperature in the dipolar spin ice model in
zero field that recovers the entire low temperature residual
magnetic entropy of the system.

For the pyrochlore lattice with Ising spins defined by
local axes, the Hamiltonian with nearest neighbor ex-
change and long-range dipolar interactions is [8–10]

H ! 2J
X

!ij"
Szi

i ? S
zj

j

1 Dr3
nn

X

i.j

Szi
i ? S

zj

j

jrijj3
2

3#Szi
i ? rij$ #Szj

j ? rij$
jrij j5

,

(1)

where the spin vector Szi
i labels the Ising moment of mag-

nitude jSj ! 1 at lattice site i and local Ising !111" axis zi
discussed earlier. Here, J represents the exchange energy
and D ! #m0%4p$g2m2%r3

nn. However, because of the
local Ising axes, the effective nearest neighbor energy
scales are Jnn & J%3 and Dnn & 5D%3.

As described in Ref. [9], the long-range nature of the
dipolar interactions can be handled by the Ewald method.
In that Letter, extensive numerical analysis via single spin
flip Monte Carlo simulations found no evidence of a tran-
sition to long-range order. Rather, short-range order domi-
nated by ice-rules correlations was observed down to low
temperatures, similar to that found in the nearest neighbor
FM model [12].

Qualitatively, the dynamics of both models appear to be
very similar. As the temperature is lowered, significant
thermal barriers are created by the energy cost involved in
fluctuating out of the ice-rules manifold. With single spin

flips, fluctuations between states within the ice-rules mani-
fold are also reduced, as it is impossible to do so without
first breaking the two-in/two-out ice rules. Such thermal
barriers produce nontrivial and extremely slow dynam-
ics. If a unique ground state exists within the plethora of
ice-rules states ['#3%2$N%2] of the dipolar spin ice model
[Eq. (1)], these thermal barriers make the probability of
reaching it in a numerical simulation using conventional
spin flips exceedingly small. Consequently, the question
concerning the nature of the ground state becomes diffi-
cult to answer using standard numerical techniques, and a
different procedure must be applied [13]. Since we found
in Ref. [9] that long-range dipolar interactions do give rise
to spin ice behavior, we take as a starting point for identi-
fying the low energy states and excitations of Eq. (1) the
exactly degenerate ice-rules states of the nearest neighbor
FM model. In Fig. 1 we denote each site of the pyrochlore
lattice by a white or a black circle which represents a spin
pointing into or out of a “downward” facing tetrahedron,
respectively. In this particular example, the spin configu-
ration shown forms an ice-rules state that can be trans-
formed into another ice-rules state by reversing all the
colors (spins) on the loop denoted by the grey hexagon.
In general, six spins form the shortest loop, while larger
loops are also possible. A loop can be constructed by sim-
ply choosing a starting lattice site and tracing out a closed
path that involves tetrahedra which have exactly two spins
on the path. Each pair of spins which are neighbors on
the path are such that one is pointing into and the other
pointing out of their shared tetrahedron, with such a loop
constructed from alternating black and white circles.

For our numerical study of the dipolar spin ice model,
this type of loop move was utilized in conjunction with
conventional single spin flip dynamics. Specifically, such
loops are identified by allowing a wandering path to form a
loop whenever it encounters any previously visited site and
ignoring any “dangling” spins in the path. This allows for a
large number of short loops to be created, with an average
length that tends to a finite value as the system size is
increased. As explained above for the dipolar system, such
“loop reversal” moves are not true zero modes, but involve
a small gain or lowering of the energy (small compared
to Jnn 1 Dnn) which is handled by a standard Metropolis
algorithm [14].

Our numerical simulations for the dipolar spin ice model
were carried out on system sizes up to 2000 spins (of cubic
unit cell length L ! 5) with O#105$ spin flips per spin
and O#105$ loop moves. For all interaction parameters Jnn
and Dnn which show spin ice behavior using single spin
flip dynamics only (Jnn%Dnn * 20.91) [9], we find that
the acceptance ratio of the loop moves increases at low
temperature as the system enters the spin ice regime, before
dropping to zero just below the temperature at which the
system undergoes a transition to a long-range ordered state
obeying the ice rules.

In Fig. 2 we present specific heat data obtained for a
system with interaction parameters Jnn and Dnn identified
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incident neutron polarization, the SF and NSF
cross sections yield information on Syy(Q) and
Szz(Q), respectively. We used a single crystal of
Ho2Ti2O7 to map diffuse scattering in the h, h, l
plane. Previous unpolarized experiments (20, 22)
have measured the sum of the SF and NSF
scattering, but in this orientation only the SF
scattering would be expected to contain pinch
points (26).

Our results (Fig. 2A) show that at temperature
(T) = 1.7 K there are pinch points in the SF cross
section at the Brillouin zone centres (0, 0, 2),
(1, 1, 1), and (2, 2, 2) (Fig. 2A) but not in the
NSF channel (Fig. 2B). The total scattering (SF +
NSF) reveals the pinch points only very weakly
(Fig. 2C) because the NSF component dominates
near the zone center. This is explicitly illustrated
with cuts across the zone center showing that the
strong peak at the pinch point in the SF channel is
only weakly visible in the total (Fig. 3B). The
total scattering (Figs. 2C and 3B) can be com-
pared with the previous observations and calcu-
lations (20, 22), in which no pinch points were
detected. The use of polarized neutrons extracts
the pinch-point scattering from the total scattering,
and the previous difficulty in resolving the pinch
point is clearly explained.

The projective equivalence of the dipolar and
near-neighbor spin ice models (10) suggests that
above a temperature scale set by the r−5 cor-
rections, the scattering from Ho2Ti2O7 should

become equivalent to that of the near-neighbor
model. T = 1.7 K should be sufficient to test
this prediction because it is close to the temper-
ature of the peak in the electronic heat capacity
that arises from the spin ice correlations [1.9 K
(20)]. In our simulations of the near-neighbor
spin ice model (Fig. 2, D to F), the experimen-
tal SF scattering (Fig. 2A) appears to be very
well described by the near-neighbor model,
whereas the NSF scattering is not reproduced by
the theory. However, we have discovered that
S(Q)experiment/S(Q)theory is approximately the same
function f (Q) for both channels. Thus, because
the theoretical NSF scattering function is approx-
imately constant, we find f ðQÞ ≈ SðQÞexperiment

NSF .
This function may be described as reaching a
maximum at the zone boundary and a finite
minimum in the zone center. Using the above
estimate of f (Q), the comparison of the quan-
tity SðQÞexperiment

SF =f ðQÞ with SðQÞtheorySF is con-
siderably more successful. Differences are less
than 5% throughout most of the scattering
map (26).

Cuts through the pinch point at (0, 0, 2)
at 1.7 K (Fig. 3, A and B) show that it has the
form of a low sharp saddle in the intensity. In
order to better resolve the line shape of the pinch
point, we performed an analogous polarized
neutron experiment on a higher-resolution spec-
trometer. To compare with theory, we used an
approximation to an analytic expression (13, 27).

In the vicinity of the (0, 0, 2) pinch point, this
becomes

Syyðqh, qk,qlÞº
q2l−2 þ x−2ice

q2l−2 þ q2h þ q2k þ x−2ice
ð1Þ

Here, xice is a correlation length for the ice rules
that removes the singularity at the pinch point
(27). The high-resolution data of Fig. 3C can be
described by this form, with a correlation length
xice ≈ 182 T 65 Å, representing a correlation vol-
ume of about 14,000 spin tetrahedra. The corre-
lation length has a temperature variation that is
consistent with an essential singularity ~exp(B/T),
with B = 1.7 T 0.1 K (Fig. 4C).

The scattering in the NSF channel is con-
centrated around Brillouin zone boundaries, as

Fig. 2. Diffuse scattering maps from spin ice, Ho2Ti2O7. Experiment [(A) to (C)] versus theory [(D) to
(F)]. (A) Experimental SF scattering at T = 1.7 K with pinch points at (0, 0, 2), (1, 1, 1), (2, 2, 2), and so
on. (B) The NSF scattering. (C) The sum, as would be observed in an unpolarized experiment (20, 22).
(D) The SF scattering obtained from Monte Carlo simulations of the near-neighbor model, scaled to
match the experimental data. (E) The calculated NSF scattering. (F) The total scattering of the near-
neighbor spin ice model.
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Fig. 3. Line shape of the pinch point. (A) Radial
scan on D7 through the pinch point at (0, 0, 2)
[s′ is the neutron scattering cross section; see (26)
for its precise definition]. (B) The corresponding
transverse scan. The lines are Lorentzian fits. (C)
Higher-resolution data, in which the line is a
resolution-corrected fit to the pinch point form Eq.
1 (the resolution width of the spectrometer is indi-
cated as the central Gaussian). (D) SF scattering at
increasing temperatures (the lines are Lorentzians
on a background proportional to the Ho3+ form
factor).
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• QSI possesses an emergent QED 
• Can tunnel between ice rules states 
• Introduces fluctuations in the gauge field

Quantum Spin Ice: A U(1) Quantum Spin Liquid
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Ce2Zr2O7: No obvious phase transition for T > 0.06 K

three independent exchange parameters (Jx̃,Jỹ,Jz̃) [19,25].
ThisHamiltonian allows formultiple phases to emerge, such
as an AIAO order, octupolar ordered phases, and also for
moment fragmentation, as observed in Nd2Zr2O7, where
static AIAO order coexists with dynamic spin ice fluctua-
tions [19,25,28,29]. In the limit of dominant antiferromag-
netic interactions and strong easy-axis exchange anisotropy,
a dipolar quantum spin ice is stabilized so long as the easy
axis is along one of the dipolar components of the DO
doublet (Jx̃ ≫ Jz̃,Jỹ or Jz̃ ≫ Jx̃,Jỹ). An octupolar quantum
spin ice is favored if the easy axis is along the octupole
component (Jỹ ≫ Jx̃,Jz̃) [19,25].
A promising family of candidate materials for dipolar or

octupolar quantum spin ice physics originating from DO
doublets are the cerium pyrochlores Ce2B2O7. The Ce3þ

ions in the pyrochlore Ce2Sn2O7 are believed to have a DO
CEF ground state and to interact via dominant antiferro-
magnetic interactions, but do not magnetically order down
to T ¼ 20 mK [25,30]. The low-energy spin dynamics of
the cerium pyrochlores remains unexplored and their
characterization is key in determining the nature of their
possible spin liquid states. In this Letter, we report new
inelastic neutron scattering experiments on powder and
single crystal samples of Ce2Zr2O7. Using high-energy
inelastic neutron scattering, we first confirmed the DO
nature of the Ce3þ single-ion ground-state wave functions
in Ce2Zr2O7. We also present low-energy inelastic neutron
scattering measurements performed on a single crystal of
Ce2Zr2O7 and observe diffuse, inelastic magnetic scatter-
ing that emerges at low temperatures. TheQ dependence of
this diffuse scattering is consistent with a symmetry-
enriched U(1) quantum spin ice state at low but finite
temperatures. Furthermore, we show the quantum spin-ice
correlations remain dynamic down to at least 60 mK with

no sign of static magnetic order. Our results demonstrate Q
signatures of a dynamic quantum spin ice ground state in
Ce2Zr2O7, with associated emergent quantum electrody-
namics and elementary excitations based on magnetic and
electric monopoles, as well as emergent photons [31–34].
Single crystal and powder samples of Ce2Zr2O7 have

been grown using floating zone techniques and solid-state
synthesis. Stabilizing the Ce3þ oxidation state in Ce2Zr2O7

is not simple and requires growth and annealing in strong
reducing conditions to minimize Ce4þ [35]. As discussed
in the Supplemental Material [36], which includes
Refs. [37–44], this is a serious issue, especially in powder
samples, where oxidization is observed to occur in powders
exposed to air on a timescale on the order of minutes,
complicating the exact characterization of the material’s
stoichiometry. The oxidization process can be tracked
through high-resolution x-ray diffraction measurements
of the lattice parameter, and it is much slower for single
crystal samples. There we can make an estimate of the
stoichiometry of the single crystal used in our experiments
as Ce2Zr2O7þδ with δ ∼ 0.1.
We first present high-energy inelastic neutron scattering

measurements, which probe the single-ion properties of the
Ce3þ ions. To do so, we used the SEQUOIA high-resolution
inelastic chopper spectrometer [45] at the Spallation
Neutron Source of Oak Ridge National Laboratory and
employed neutrons with incident energies (Ei) of 150 and
500meV. TheEi ¼ 150 meV instrument settingwas chosen
to resolve the CEF states that belong to the spin-orbit
ground-state manifold (J ¼ 5=2). The CEF interaction
lifts the Ce3þ spin-orbit ground-state degeneracy into
three different eigenstates that are each doubly degenerate.
We also estimated a CEF Hamiltonian for Ce2Zr2O7 using a
scaling procedure based on the Er3þ pyrochlore CEF

FIG. 1. (a) The inverse magnetic susceptibility of a powder sample of Ce2Zr2O7. The red curve is the Van Vleck susceptibility
calculated with the CEF Hamiltonian of Ce2Zr2O7. (Top left inset) The AIAO and 2I2O magnetic ground-state spin configurations on a
pair of tetrahedra. (Bottom right inset) The low-temperature magnetic susceptibility that yields θCW ¼ −0.4ð2Þ K and a paramagnetic
moment of 1.3ð1Þ μB and shows no signature of magnetic order or spin freezing down to 0.5 K. (b) Inelastic neutron scattering spectra of
Ce2Zr2O7 at T ¼ 5 K with incident neutron energy Ei ¼ 150 meV. Two strong excitations can be identified as magnetic in origin at
E ∼ 56 and ∼112 meV, as their intensity decreases as a function of jQj, consistent with the Ce3þ magnetic form factor. (c) The energy
eigenvalues corresponding to the CEF states belonging to the spin-orbit ground-state manifold of Ce2Zr2O7. The composition of the
CEF eigenfunctions are also presented in (c), revealing the DO nature of the ground-state doublet—that is, it corresponds to pure
mJ ¼ %3=2 states.
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The B0
2, B

0
4 and B3

4 terms of the CEF Hamiltonian were
refined using the observed energies and scattered neu-
tron intensities of the magnetic excitations near 58 and
110 meV. It was possible to extract this information using
a constant |Q|-cut from the 150 meV data. We obtain this
by integrating the 150 meV spectra (Fig.1(a) of the main
letter) between |Q| = 4.5 and 5.5 Å�1. The resulting in-
tegration is shown in Fig.S2(a). The two CEF transitions,
so-identified by their |Q|-dependence, are indicated by the
black arrows in Fig.S2(a), while other features observed
in Fig.S2(a) are likely optical phonon excitations. The
CEF transitions as well as the phonon excitations were
fitted using a Lorentzian function in energy. The result-
ing fit of the 150 meV data set is plotted in Fig.S2(a).
From this fit, we determined that the energies of the CEF
levels within the spin-orbit J-manifold are E1 = 55.9(1)
and E2 = 110.5(1) meV. The relative intensity of the
CEF transitions between the CEF ground state to the
first (I1) and the second (I2) excited state is found to
be I1/I2 = 1.2(1). Using these three constraints (E1, E2,
I1/I2), we refined B0

2 = 0.835 meV, B0
4 = 0.299 meV and

B3
4 = 2.875 meV. Comparison between the calculation and

data is shown in Table.S1. The calculated eigenstates and
eigenfunctions using this CEF Hamiltonian are reported
in Table.S2.

In the main letter, we also reported a weaker magnetic
excitation near 100 meV, so just below E2. It is possible
that magneto-elastic coupling between the CEF ground
state and the 2nd excited CEF state (E2) is su�ciently
strong to drive a vibronic bound state, which would e↵ec-
tively split the single-ion CEF excitation at E2 into two
di↵erent excitations [6]. Here, these two excitations would
correspond to the one at 110 meV and the one at 100 meV.
Thus, within the scenario of a vibronic bound state as the
origin of the inelastic scattering at 100 meV, we under-
estimated I2. We can compensate for this by adding the
integrated intensity of the 100 meV transition. By doing
so, a new optimization of the CEF Hamiltonian could
be refined, leading to B0

2 = 0.455 meV, B0
4 = 0.295 meV

and B3
4 = 2.582 meV. Table.S1 also shows the compari-

son between the data and the calculation within such a
scenario. This scenario in which a vibronic bound state
is responsible for the weak inelastic intensity near 100
meV also leads to a CEF ground state that is a pure
mJ = ±3/2 state. Thus the conclusion that the CEF
ground state doublet for Ce2Zr2O7 is a pure mJ = ±3/2
doublet with dipolar octupolar character is robust.
We also present the Ei = 500 meV inelastic neutron

scattering spectra of Ce2Zr2O7 in Fig.S2(b). This in-
elastic scattering data shows a clear magnetic feature
near 275 meV that corresponds to a transition originating
from the CEF ground state to the highest J-manifold
(J = 7/2). Two additional, albeit weaker, excitations can
be identified by taking appropriate |Q| cuts of this data
and comparing to the measured empty can, background
scattering. This is shown in Fig.S2(c), where a |Q| inte-

TABLE I. Comparison between the observed (Obs1,Obs2) and
calculated (Calc1,Calc2) energies and intensities of the CEF
excitations in Ce2Zr2O7. Scenario 1 refers to the case where
no vibronic bound state is present, while Scenario 2 is the case
where weak inelastic scattering near 100 meV is identified as
arising due to a vibronic bound state.

Obs1 Calc1 Obs2 Calc2
E1

(meV)
55.9(2) 55.92 55.9(1) 56.06

E2

(meV)
110.5(3) 110.55 106.1(4) 105.97

I1/I2
(arb.units)

1.2(1) 0.98 0.99(15) 0.92

TABLE II. Eigenstates and eigenfunctions of the spin-orbit
ground state manifold written within the |J = 5/2,mJi basis.
These eigenfunctions correspond to the scenario of no vibronic
bound-state. A mJ = ±3/2 CEF ground state is stabilized
for both scenarios (without and with a vibronic bound state).

E(meV) -5/2 -3/2 -1/2 1/2 3/2 5/2
E1 0 1 0 0 0 0
E2 0 0 0 0 1 0
E3 0.725 0 0 0.688 0 0
E4 0 0 -0.688 0 0 0.725
E5 0 0 -0.725 0 0 -0.688
E6 0.688 0 0 -0.725 0 0

gration from |Q| = 7 to 10 Å�1 is performed. This reveals
three CEF transitions ⇠ 260, 310 and possibly 340 meV.
The location in energy of these highest J = 7/2 states
is consistent with estimates of the spin-orbit coupling
strength (�) for Ce3+ [7, 8].

Finally, the determination of our CEF Hamiltonian
appropriate for Ce2Zr2O7 was further validated via cal-
culation of its Van-Vleck susceptibility that can be com-
pared with the temperature dependence of its measured
magnetic susceptibility. The following Van-Vleck suscep-
tibility term (ref.[9]) was computed for a powder sample:

�CEF =
NAg

2
Jµ

2
BX

kBZ

X

↵

(
X

n

|hn|J↵|ni|
2
e
�En/T

T
+ (2)

X

n

X

m 6=n

|hm|J↵|ni|
2(e�En/T � e

�Em/T )

Em � En
)

where ↵ = x, y, z, NA is the Avogadro constant, gJ is
the Landé g-factor, kB is the Boltzman constant, µB is
the Bohr magneton and Z =

P
n e

�En/T is the partition
function. The factor X was used to parametrize the
dilution of the Ce3+ ions into non-magnetic Ce4+ and
was refined to 0.92(2), which is in good agreement with
our estimate of the oxidation level in our samples using
the refined lattice parameters (see section 1 of the SM).

ΘCW ~ −0. 4 K

pµ = 1.3(1)
Bµ
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FIG. 2. Spin wave spectra along three di↵erent directions in the HHL plane: [HH0], [22L], and [HHH], all at T =0.1 K. The
spectra are shown for each of the three samples in zero magnetic field, and with magnetic fields of 0.5 T, 1 T, and 3 T applied
along the [1-10] direction. The contour plots along the [HH0], [22L] and [HHH] directions are obtained by integrating the 3D

data set, S( ~Q,E), over �0.2  [00L]  0.2, 1.8  [HH0]  2.2 and 0.2  [HH � 2H]  0.2, respectively.

We first consider the elastic scattering from the three
crystals at the (220) Bragg position in zero field, 0.5 T
and 3 T, as shown in Fig. 1. The intensities have been
normalized using the Bragg intensity at H = 3T, which
corresponds to the polarized state where the scattered
intensity at (220) is purely structural. As the field is
increased to 0.5 T, we observe a marked increase in the
peak intensity for the pure sample as well as for the 10%-
Y doped sample, but not for the 20%-Y diluted crys-
tal. More striking is the evolution of the shape of the
(220) Bragg peak with magnetic dilution. In zero field,
the undoped sample exhibits a resolution-limited Bragg
peak with a small amount of di↵use scattering extending
out along [HH0] (Fig. 1(a)). Upon dilution, the rela-
tive contribution of the resolution-limited Bragg scatter-
ing weakens with a corresponding increase in the di↵use
scattering, such that the lineshape of the 20%-Y sample
is dominated by a Lorentzian form in both zero field and
at 0.5 T (Fig. 1(c)).

To determine the origin of the di↵use scattering around
(220), we look to the full inelastic neutron spectra in
Fig. 2. These data are shown along three reciprocal space
directions for each of the three samples in four di↵erent
magnetic fields applied along the [1,-1,0] direction. In
zero field (top row of Fig. 2), the spin waves of the three
samples are qualitatively similar, consisting of one flat
branch near 0.4 meV and quasi-Goldstone modes which
soften at (111) and (220). A previous high resolution
inelastic neutron scattering study of the pure sample de-
termined that the quasi-Goldstone modes are gapped by
0.053 ± 0.006 meV [28]. As the energy resolution as-
sociated with the present inelastic measurements is 0.09
meV, elastic cuts of the form shown in Fig. 1 necessar-
ily integrate over some of the spectral weight of these
quasi-Goldstone modes. Thus, for the pure sample, this

low energy inelastic scattering is the origin of the dif-
fuse scattering observed in our cuts over (220) in Fig. 1.
However for the 10%-Y and especially the 20%-Y sam-
ple, our data suggests that the spin gap is reduced from
0.053 meV, allowing for additional quasi-elastic and elas-
tic magnetic scattering, characteristic of a frozen mosaic
of  2 and  3 domains.

In order to understand the contributions to the scat-
tering in the cuts of Fig. 1, we fit each elastic data set
to the sum of a Gaussian and a Lorentzian lineshape,
quantifying the magnetic long-range order (LRO) and
the dynamic, quasi-elastic or frozen spin contributions,
respectively. An example of such a fit for each sample
is shown in the Supplemental Material [38]. The result-
ing fits show that the relative contribution of the di↵use,
Lorentzian lineshape grows as a function of doping and
accounts for ⇠75% of the Q-integrated scattering near
(220) in the 20%-Y sample at T = 0.1 K and zero field.
We therefore suggest that with increasing magnetic dilu-
tion, x, the spin excitations near (220) in Er2�xYxTi2O7

soften to lower energies and freeze. This is likely the
result of a collapsing spin gap, a direct measure of the
selection of  2 over  3.

We can now isolate the LRO component of the elastic
scattering and study its field dependence at T = 0.1 K.
Once again, we use the fits to the scattering around (220),
wherein a resolution-limited Gaussian lineshape repre-
sents the LRO and a broadened Lorentzian represents
the dynamic, quasi-elastic and frozen spin response cap-
tured by our finite energy resolution. The LRO inte-
grated intensity at (220) is shown as a function of a [1,-
1,0] magnetic field for each sample in the insets of Fig. 1.
Comparing the LRO intensity at zero field and 0.5 T, we
observe a twofold increase for both the pure and 10%-
Y samples, while the LRO is unchanged for the 20%-Y

spin waves,
phase transitions

etc
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High Energy Physics: CEF excitations  
and Dipole-Octupole Ground State in Ce2Zr2O7
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FIG. 2. (a) Inelastic neutron scattering spectra obtained for an incident energy of 150 meV for Ce2Zr2O7, and integrated between
|Q| = 4.5 and 5.5 Å�1 (this is a cut of the data shown in Fig.1(a) of the main manuscript). The two black arrows indicate the
energy position of the CEF transitions originating from the main Ce3+ site. (b) High energy inelastic neutron scattering spectra
of Ce2Zr2O7 obtained with an incident energy of 500 meV. The arrow highlights the relatively weaker magnetic excitations near
275 meV. c) A constant energy cut of the data shown in b), integrated in |Q| between 7 and 10 Å�1, is shown, along with data
from the empty sample can. We identify three CEF transitions from the ground state to the highest J manifold at ⇠ 270 meV,
310 meV and 340 meV. These energies are su�ciently high, such that no optic phonons are expected to be nearby in energy.

growth, we employed a growth rate of 2.5 mm/hour while
counter-rotating feed and seed rods at 15 rpm in an argon
atmosphere containing 5% hydrogen. Further annealing
of the single crystals for 36 hours at 1200�C was also
performed prior to all experiments. A photograph of
a typical single crystal of Ce2Zr2O7 obtained through
this protocol is shown in Fig.S1(b). A broken surface
is shown and one can see that the inside of the single
crystal piece is bright yellow while the surface exposed
to air is black, indicating some remaining oxidation at
the surface after the annealing process. Refinement of a
yellow single crystal piece from the unexposed inner layer
of the crystal is shown in Fig.1(c). Such x-ray di↵raction
measurements on crushed single crystals give a lattice
parameter refinement of a = 10.718(5) Å for the bulk
inner layer of the crystal, as shown in Fig.1(c), and this
can be use to estimate the oxidation state of our annealed
single crystal sample, Ce2Zr2O7+�, to be � ⇠ 0.1.

Finally, we characterized the time dependence of
Ce2Zr2O7+� by collecting several powder di↵raction pat-
terns from a broken, ceramic rod of material, for di↵ering
exposure times in air following a 1200�C, 6 hour hydrogen
annealing protocol. The lattice parameter extracted from
x-ray di↵raction measurements is shown as a function of
time in Fig.S1(d) for this polycrystalline sample, whose ox-
idation rate should be between the fast rate of the powder
samples of Ce2Zr2O7+� and slow rate of the relatively-well
behaved single crystal samples of Ce2Zr2O7+�. The inset
shows x-ray di↵raction scans of the Q = (222) Bragg peak
as a function of scattering angle and exposure time. Not
only do the Bragg peaks shift higher in 2✓ with expo-
sure (sample oxidation), they also significantly broaden
and eventually split into multiple distinguishable peaks.
This broadening and splitting corresponds to a distri-
bution of oxidation in the sample, and to the eventual
formation of separate majority and minority phases with

di↵erent levels of oxidation, such as the bulk inner and
thin outer layers of di↵ering color in the case of single
crystal Ce2Zr2O7+�. The x-ray intensity at the Q = (222)
Bragg position for each data set was fit to Lorentzian
peak shapes according to the number of peaks present
around that Bragg position. The average lattice constant
for each data set with multiple distinguishable peaks (>
29.5 hours) was determined by using a weighted average
of the lattice constants determined from these peaks, with
the integrated intensity of the peaks used as the weights
for this average. Figure S1(d) should then give the time
dependence of the volume-averaged lattice constant in
this polycrystalline sample.

DETERMINATION OF THE CEF
HAMILTONIAN

As discussed in the main manuscript, the CEF eigen-
states for Ce3+ in Ce2Zr2O7 were expressed in the
|J = 5/2,mJi manifold and fitted using the low energy
CEF transitions observed in the Ei = 150 meV neutron
scattering spectra. We refined a CEF Hamiltonian for
Ce2Zr2O7 by constraining the relative scattered intensi-
ties and energies of the CEF transitions observed in our
Ei = 150 meV spectra (Fig.1(a) of the main letter). The
following CEF Hamiltonian was used in this work:

HCEF = B
0
2Ô

0
2 +B

0
4Ô

0
4 +B

3
4Ô

3
4 (1)

The protocol and the expression of the CEF Hamilto-
nian in terms of Stevens operators used in this work is
identical to ref. [4, 5] and we refer the reader to these
works for further details. It is worthwhile mentioning that
the CEF Hamiltonian appropriate for the R3+(D3d) site
of the pyrochlore lattice includes six Stevens operators
(B0

2, B
0
4, B

3
4, B

0
6, B

3
6, B

6
6), however the three Bn

6 terms are
zero for Ce3+.

three independent exchange parameters (Jx̃,Jỹ,Jz̃) [19,25].
ThisHamiltonian allows formultiple phases to emerge, such
as an AIAO order, octupolar ordered phases, and also for
moment fragmentation, as observed in Nd2Zr2O7, where
static AIAO order coexists with dynamic spin ice fluctua-
tions [19,25,28,29]. In the limit of dominant antiferromag-
netic interactions and strong easy-axis exchange anisotropy,
a dipolar quantum spin ice is stabilized so long as the easy
axis is along one of the dipolar components of the DO
doublet (Jx̃ ≫ Jz̃,Jỹ or Jz̃ ≫ Jx̃,Jỹ). An octupolar quantum
spin ice is favored if the easy axis is along the octupole
component (Jỹ ≫ Jx̃,Jz̃) [19,25].
A promising family of candidate materials for dipolar or

octupolar quantum spin ice physics originating from DO
doublets are the cerium pyrochlores Ce2B2O7. The Ce3þ

ions in the pyrochlore Ce2Sn2O7 are believed to have a DO
CEF ground state and to interact via dominant antiferro-
magnetic interactions, but do not magnetically order down
to T ¼ 20 mK [25,30]. The low-energy spin dynamics of
the cerium pyrochlores remains unexplored and their
characterization is key in determining the nature of their
possible spin liquid states. In this Letter, we report new
inelastic neutron scattering experiments on powder and
single crystal samples of Ce2Zr2O7. Using high-energy
inelastic neutron scattering, we first confirmed the DO
nature of the Ce3þ single-ion ground-state wave functions
in Ce2Zr2O7. We also present low-energy inelastic neutron
scattering measurements performed on a single crystal of
Ce2Zr2O7 and observe diffuse, inelastic magnetic scatter-
ing that emerges at low temperatures. TheQ dependence of
this diffuse scattering is consistent with a symmetry-
enriched U(1) quantum spin ice state at low but finite
temperatures. Furthermore, we show the quantum spin-ice
correlations remain dynamic down to at least 60 mK with

no sign of static magnetic order. Our results demonstrate Q
signatures of a dynamic quantum spin ice ground state in
Ce2Zr2O7, with associated emergent quantum electrody-
namics and elementary excitations based on magnetic and
electric monopoles, as well as emergent photons [31–34].
Single crystal and powder samples of Ce2Zr2O7 have

been grown using floating zone techniques and solid-state
synthesis. Stabilizing the Ce3þ oxidation state in Ce2Zr2O7

is not simple and requires growth and annealing in strong
reducing conditions to minimize Ce4þ [35]. As discussed
in the Supplemental Material [36], which includes
Refs. [37–44], this is a serious issue, especially in powder
samples, where oxidization is observed to occur in powders
exposed to air on a timescale on the order of minutes,
complicating the exact characterization of the material’s
stoichiometry. The oxidization process can be tracked
through high-resolution x-ray diffraction measurements
of the lattice parameter, and it is much slower for single
crystal samples. There we can make an estimate of the
stoichiometry of the single crystal used in our experiments
as Ce2Zr2O7þδ with δ ∼ 0.1.
We first present high-energy inelastic neutron scattering

measurements, which probe the single-ion properties of the
Ce3þ ions. To do so, we used the SEQUOIA high-resolution
inelastic chopper spectrometer [45] at the Spallation
Neutron Source of Oak Ridge National Laboratory and
employed neutrons with incident energies (Ei) of 150 and
500meV. TheEi ¼ 150 meV instrument settingwas chosen
to resolve the CEF states that belong to the spin-orbit
ground-state manifold (J ¼ 5=2). The CEF interaction
lifts the Ce3þ spin-orbit ground-state degeneracy into
three different eigenstates that are each doubly degenerate.
We also estimated a CEF Hamiltonian for Ce2Zr2O7 using a
scaling procedure based on the Er3þ pyrochlore CEF

FIG. 1. (a) The inverse magnetic susceptibility of a powder sample of Ce2Zr2O7. The red curve is the Van Vleck susceptibility
calculated with the CEF Hamiltonian of Ce2Zr2O7. (Top left inset) The AIAO and 2I2O magnetic ground-state spin configurations on a
pair of tetrahedra. (Bottom right inset) The low-temperature magnetic susceptibility that yields θCW ¼ −0.4ð2Þ K and a paramagnetic
moment of 1.3ð1Þ μB and shows no signature of magnetic order or spin freezing down to 0.5 K. (b) Inelastic neutron scattering spectra of
Ce2Zr2O7 at T ¼ 5 K with incident neutron energy Ei ¼ 150 meV. Two strong excitations can be identified as magnetic in origin at
E ∼ 56 and ∼112 meV, as their intensity decreases as a function of jQj, consistent with the Ce3þ magnetic form factor. (c) The energy
eigenvalues corresponding to the CEF states belonging to the spin-orbit ground-state manifold of Ce2Zr2O7. The composition of the
CEF eigenfunctions are also presented in (c), revealing the DO nature of the ground-state doublet—that is, it corresponds to pure
mJ ¼ %3=2 states.
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FIG. 1. (a) The magnetic charge distributions associated
with octupoles (left) and dipoles (right) are depicted at the
vertices of five corner-sharing tetrahedra, making up part of
the pyrochlore lattice. (b) Octupolar and dipolar components
inhabit the same pseudospin- 12 Ce3+ degrees of freedom in
Ce2Zr2O7, such that y-components behave as octupoles, while
the x and z components of each pseudospin- 12 behave as dipoles,
as schematically illustrated here using the magnetic charge
distributions associated with di↵erent directions of pseudospin
in the yz-plane.

tetrahedra on part of a cubic pyrochlore lattice. As dis-
cussed above, for the dipole-octupole doublets relevant to
Ce2Zr2O7, a single component of the pseudospin- 12 degree
of freedom (the y-component) behaves as an octupole,
while the x and z components behave as dipoles under
the symmetry of the lattice and time-reversal symmetry,
as schematically illustrated in Fig. 1(b).
Such DO doublets decorating pyrochlore lattices are

theoretically known to allow for at least 6 distinct quan-
tum disordered and ordered ground states, with three
in each of the dipole and octupole sectors [10–12]. Re-
cent neutron scattering measurements on single crystal
Ce2Zr2O7 have uncovered a signal that strongly resembles
predictions for the energy-integration of emergent photon
excitations in a U(1) quantum spin ice [7], while recent
experiments on powder samples of Ce2Sn2O7 have been
interpreted in terms of a U(1) quantum spin ice ground
state in the octupole sector [9].

II. OUTLINE OF THE PAPER

In this paper, we present new polarized neutron di↵rac-
tion and heat capacity measurements on single crystal
Ce2Zr2O7. The former bears both similarities and dif-
ferences from that measured in the canonical dipolar
spin ice compound, Ho2Ti2O7, while the latter shows
no sign of a thermodynamic phase transition above T =
0.06 K. Cp rises sharply at low temperatures, initially
plateauing near 0.08 K, before falling o↵ towards a high
temperature zero beyond 3 K, consistent with previous
measurements [8]. We have modelled the high tempera-
ture Cp, and the powder-averaged magnetic susceptibility
using quantum numerical linked cluster (NLC) expansions.
This allows us to estimate and constrain the parameters

of the anticipated near-neighbour XYZ Hamiltonian. To
the extent that interactions beyond near-neighbour do
not alter ground state selection, we constrain the nature
of the ground state itself, with the results indicating a
U(1)⇡ QSL ground state is selected at low temperature.

We use the resulting near neighbour exchange parame-
ters to calculate the equal-time spin flip (SF) and non-spin
flip (NSF) structure factors in the [HHL] scattering plane.
This calculation resembles the new polarized neutron
di↵raction measurements in the SF channel from single
crystal Ce2Zr2O7, but cannot account for the observed
zone-boundary di↵use scattering in the NSF channel. We
attribute this discrepancy to interactions beyond near-
neighbour in the Hamiltonian, which are expected to be
small, and a full study of which is beyond the scope of
our present work. The same discrepancy exists for spin-
polarized neutron di↵raction from Ho2Ti2O7, where it
was ascribed to expected long range dipolar interactions
[13]. NLC calculations using the same near-neighbour
exchange Hamiltonian were also carried out to 7th order.
While these agree with the 4th order calculations above
⇠0.5 K, they depart from the measured Cp at lower tem-
peratures. We interpret this as arising from the same
interactions beyond near neighbour in Ce2Zr2O7 that
were revealed by the NSF zone boundary scattering. As
these are relatively weak, they only manifest themselves
at low temperatures.

A further consistency check is carried out via semiclas-
sical Monte Carlo and Molecular Spin Dynamics using the
best fit near-neighbour Hamiltonian. This calculation ac-
counts for the energy dependence of the inelastic spectral
weight making up the di↵use scattering at low tempera-
tures without further adjustment of the NLC-determined
near-neighbour Hamiltonian. We further show that the
full R ln(2) entropy of the DO ground state doublet can
be accounted for to 10 K with a smooth extrapolation
of Cp from the lowest temperature data point at T =
0.06 K, to zero at T = 0 K, using a theoretical form which
is simultaneously consistent with both the expected be-
havior of a U(1) QSL at low temperature, and the high
temperature limit of the NLC calculations. Interestingly,
the Pauling, classical spin ice entropy R ln(2) less R

2 ln( 32 )
is recovered from the peak in the Cp data at ⇠0.08 K, to
10 K.

III. POLARIZED NEUTRON DIFFRACTION

We have carried out new polarized di↵raction measure-
ments on single crystal Ce2Zr2O7 using the D7 di↵rac-
tometer at the Institute Laue Langevin. This di↵rac-
tometer employs a spin polarized monochromatic incident
beam, which was Ei = 3.47 meV for this experiment. This
configuration e↵ectively integrates over �E ⇠0.16 meV
during the course of a di↵raction measurement. A single
polarization direction, perpendicular to the [HHL] scat-
tering plane, was employed, and as such the spin flip (SF)
and non-spin flip (NSF) di↵use scattering profiles can be

Smith et al, PRX 12, 021015 (2022)
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FIG. 10. The temperature evolution of the low-energy inelastic neutron scattering from a powder sample of Ce2Zr2O7. A data
set measured at 9.6 K has been subtracted from a data set measured at T = 0.06 K (a), 0.25 K (b), 0.5 K (c), 0.75 K (d), 1 K
(e), 1.5 K (f), and 3 K (g). (h) The powder-averaged neutron scattering signal measured at T = 0.06 K from a single-crystal
sample of Ce2Zr2O7, with a T = 2 K data set subtracted, is shown for comparison.

FIG. 11. (a) The temperature-dependence of the integrated intensity for the Bragg peaks at the Q = (2, 2, 0) (red) and
Q = (1, 1, 3) (blue) positions. No significant temperature dependence is discernible. (b) Elastic Q-cuts through the Q = (2, 2, 0)
(left) and Q = (1, 1, 3) (right) positions at T = 0.06 K (blue) and averaged over the higher temperature data points T = 0.25 K,
0.5 K, 0.75 K, 1 K, 1.5 K (red). The Gaussian fitting to each of these data sets, used to determine a corresponding integrated
intensity, is also shown for each Bragg peak in (b). From these integrated intensities, we conclude that no AIAO dipole order
occurs in Ce2Zr2O7, with an upper-limit on the Ce3+ ordered moment of µordered  0.04 µB.

because the classical dynamical structure factor is sym-
metric with respect to neutron energy-transfer E, and it
vanishes as T approaches zero for all E > 0. Neither of
these is the case for the dynamical structure factor of
the quantum system. Another, more quantitative, way to
think about this is via the fluctuation-dissipation theo-
rem by comparing the version for classical and quantum
systems [29]. In particular, for a classical system we
get (�E)Sclassical(Q, E, T ) = �

00(Q, E, T ) while for the
quantum system it reads (1� e

��E)Squantum(Q, E, T ) =
�
00(Q, E, T ), where � = 1/(kBT ). It is then reason-

able to equate the imaginary part of the susceptibility,
�
00(Q, E, T ), as this quantity is real and symmetric for

both the classical and the quantum system. Furthermore,

as shown in Ref. [30], �00
quantum = �

00

classical within linear
spin wave theory. Using the quantum and classical fluc-
tuation dissipation theorem for the respective sides then
yields,

Squantum(Q, E, T ) =
�E

1� e��E
Sclassical(Q, E, T ), (F1)

which is what we use to estimate the dynamical struc-
ture factor of the (quantum) experiment using our clas-
sical simulation. The dynamical structure factor is then
powder-averaged to obtain Squantum(|Q|, E, T ), and con-
volved with the experimental resolution. In Fig. 3(d-i) of
the main text, we show the calculated powder-averaged

Inelastic scattering  
shows  

no static moment 
at any T > 0.06 K

J. Gaudet et al, 
PRL 122, 187201 (2019)
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are also overlaid for ease of comparison. One can see
that the phonon contribution to Cp, as measured in the
La2Zr2O7 sample, is negligible below ⇠10 K, and thus
Cmag is easily isolated. These results show that Cmag rises
on decreasing temperature below ⇠3 K, and then drops
o↵ sharply below ⇠0.08 K, consistent with the earlier
measurements (Ref. [8]) and a disordered ground state,
as no sharp features associated with a phase transition
can be identified.
The order of the quantum NLC calculations, which

were used to model the experimental results, refers to the
maximum number of tetrahedra considered in a cluster.
We have carried out NLC calculations for orders of 7 and
less to model the magnetic heat capacity at temperatures
above an order-dependent threshold. This threshold is
set by the temperature above which the n

th-order cal-
culation for a particular set of near neighbour exchange
parameters is consistent with the corresponding (n-1)th-
order calculation. NLC calculations become progressively
more time-consuming to carry out at higher order. For
this reason, calculations of the high temperature Cmag

with varying exchange parameters were carried out only
to order 4, while calculations of other observables (in-
tegrated S(Q, T ) and susceptibility) were calculated at
lower order. NLC calculations at order 7, the highest
order reported here, were carried out for Cmag with a
single set of exchange couplings only. Going beyond 6th

order is significant, because this is the first order at which
the expansion contains non-trivial loops.

At temperatures of T ⇠0.5 K and above, the measured
Cmag data can be compared with 4th order NLC (NLC-4)
calculations for Cmag in order to model and constrain
Ce2Zr2O7’s microscopic near-neighbour Hamiltonian. As
the zero-field heat capacity contains no directional infor-
mation, we define a new set of axes, {a, b, c}, to be the
permutation of {x̃, ỹ, z̃} such that |Ja| � |Jb|, |Jc| and
Jb � Jc. This allows for a unique fit to Cmag but does
not specify which values correspond to which exchange
constants. Accordingly, the fit does not distinguish be-
tween the octupolar or dipolar nature of the ground-state.
Nonetheless, knowledge of Ja, Jb, and Jc su�ces to de-
termine whether the ground state is an ordered phase or
a QSL phase [10].
This Ja, Jb, Jc Hamiltonian can also be written in

terms of raising and lowering operators with respect to
Si

a, giving:

HABC =
X

<ij>

[JaSi
a
Sj

a + JbSi
b
Sj

b + JcSi
c
Sj

c]

=
X

<ij>

[JaSi
a
Sj

a � J±(Si
+
Sj

� + Si
�
Sj

+)

+ J±±(Si
+
Sj

+ + Si
�
Sj

�)]

(2)

in zero field, where J± = � 1
4 (Jb + Jc), J±± = 1

4 (Jb � Jc).
The set of exchange parameters (Ja, Jb, Jc) best re-

producing Cmag was obtained from a 4th order NLC
calculation with an Euler transformation to improve

FIG. 4. (a) The goodness-of-fit parameter (h �2
✏2
iCmag) for the

4th-order NLC calculation compared to the measured Cmag, as
a function of the exchange parameters, Ja, J± = - 14 (Jb + Jc),
and J±± = 1

4 (Jb - Jc). This displays two local minima of

h �2
✏2
iCmag. The best-fit parameters are labelled as parameter

set A and parameter set B. The global minimum corresponds
to set A while set B is only locally optimal. (b) The best fit
parameters from the NLC calculations (A and B) overlaid on
the zero-field ground state phase diagram predicted for the
XYZ model Hamiltonian and DO pyrochlores [10]. The set A
exchange parameters are well-within the region of the phase
diagram that is attributed to the U(1)⇡ QSL, while the set B
parameters are well-within the region attributed to an ordered
ground state.

convergence. Heat capacity curves were calculated for
values of -1  Jb  1 and -1  Jc  Jb in incre-
ments of 0.01, with Ja = 1. Each curve was then re-
scaled for best agreement with experiment to determine
the value of Ja, according to the goodness-of-fit mea-

sure h �
2

✏2 iCmag /
P (CNLC

mag (Texp)�Cexp
mag(Texp))

2

✏(Texp)2
; where the

sum is over measured temperatures Texp above the low-
temperature threshold 0.7Ja

kB
, restricting the fit to the

regime where the NLC calculations converge, and ✏(Texp)
is the experimental uncertainty on the heat capacity at
temperature Texp. The values of h �

2

✏2 iCmag over the entire
phase space, after optimization of the scale Ja for each
parameter set, are shown in Fig. 4(a). This displays two
extended regions in which there is good agreement with
the experimental Cmag. Both regions are entirely within
one single phase in the predicted ground state phase di-
agram for the near neighbour XYZ model Hamiltonian



Let us introduce a special notation for the individual terms in the Hamiltonian:

Kjk ¼
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jr

x
k; if ðj; kÞ is an x-link,
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y
k; if ðj; kÞ is an y-link,
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z
k; if ðj; kÞ is an z-link.
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Fig. 3. Three types of links in the honeycomb lattice.
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Abstract

A spin-1/2 system on a honeycomb lattice is studied. The interactions between nearest neighbors
are of XX, YY or ZZ type, depending on the direction of the link; different types of interactions may
differ in strength. The model is solved exactly by a reduction to free fermions in a static Z2 gauge
field. A phase diagram in the parameter space is obtained. One of the phases has an energy gap
and carries excitations that are Abelian anyons. The other phase is gapless, but acquires a gap in
the presence of magnetic field. In the latter case excitations are non-Abelian anyons whose braiding
rules coincide with those of conformal blocks for the Ising model. We also consider a general theory
of free fermions with a gapped spectrum, which is characterized by a spectral Chern number m. The
Abelian and non-Abelian phases of the original model correspond to m = 0 and m = ±1, respectively.
The anyonic properties of excitation depend on m mod 16, whereas m itself governs edge thermal
transport. The paper also provides mathematical background on anyons as well as an elementary
theory of Chern number for quasidiagonal matrices.
! 2005 Elsevier Inc. All rights reserved.
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of conformal field theory, which is more relevant to edge excitations rather than the bulk
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the lattice contains one vertex of each kind. Links are divided into three types, depending
on their direction (see Fig. 3B); we call them ‘‘x-links,’’ ‘‘y-links,’’ and ‘‘z-links.’’ The
Hamiltonian is as follows:

H ¼ "Jx

X

x-links
rx
jr

x
k " Jy

X

y-links
ry
jr

y
k " J z

X

z-links
rz
jr

z
k; ð4Þ

where Jx, Jy, and Jz are model parameters.

Table 2
Properties of anyons for m ” 2 (mod 4)
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is impossible, even if we introduce new terms in the Hamiltonian. On the other hand, the
eight copies of each phase (corresponding to different sign combinations of Jx,Jy,Jz) have
the same translational properties. It is unknown whether the eight copies of the gapless
phase are algebraically different.

We now consider the zeros of the spectrum that exist in the gapless phase. The momen-
tum q is defined modulo the reciprocal lattice, i.e., it belongs to a torus. We represent the
momentum space by the parallelogram spanned by (q1,q2)—the basis dual to (n1,n2). In
the symmetric case (Jx = Jy = Jz) the zeros of the spectrum are given by

ð34Þ

If |Jx| and |Jy| decrease while |Jz| remains constant, q* and #q* move toward each other
(within the parallelogram) until they fuse and disappear. This happens when
|Jx| + |Jy| = |Jz|. The points q* and #q* can also effectively fuse at opposite sides of the par-
allelogram. (Note that the equation q* = #q* has three nonzero solutions on the torus.)

At the points ±q* the spectrum has conic singularities (assuming that q* „ #q*)

ð35Þ

7. Properties of the gapped phases

In a gapped phase, spin correlations decay exponentially with distance, therefore spa-
tially separated quasiparticles cannot interact directly. That is, a small displacement or
another local action on one particle does not influence the other. However, the particles

Jx Jz= =0Jy Jz= =0

=1,Jx =1,Jy

=1,Jz Jx Jy= =0

gapless

gappedAz

Ax Ay

B

Fig. 5. Phase diagram of the model. The triangle is the section of the positive octant (Jx, Jy, Jz P 0) by the plane
Jx + Jy + Jz = 1. The diagrams for the other octants are similar.
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Mott Insulators in the Strong Spin-Orbit Coupling Limit:
From Heisenberg to a Quantum Compass and Kitaev Models
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We study the magnetic interactions in Mott-Hubbard systems with partially filled t2g levels and with

strong spin-orbit coupling. The latter entangles the spin and orbital spaces, and leads to a rich variety of

the low energy Hamiltonians that extrapolate from the Heisenberg to a quantum compass model

depending on the lattice geometry. This gives way to ‘‘engineer’’ in such Mott insulators an exactly

solvable spin model by Kitaev relevant for quantum computation. We, finally, explain ‘‘weak’’ ferro-

magnetism, with an anomalously large ferromagnetic moment, in Sr2IrO4.

DOI: 10.1103/PhysRevLett.102.017205 PACS numbers: 75.30.Et, 71.70.Ej, 75.10.Jm

The transition metal compounds with partially filled
d-levels have been the subject of extensive studies after
the discovery of a variety of novel physical phenomena and
a diversity of new phases [1–3]. In the undoped com-
pounds, a strong Coulomb repulsion localizes the
d-electrons in Mott-Hubbard or charge-transfer insulating
regimes [4]. The low energy physics of such insulators, in
some cases, is described in terms of spin-only Hamil-
tonians. This happens when the symmetry of the local
surrounding of a transition metal (TM) ion is low enough
to lift the orbital degeneracy of a d-level as in the case of,
e.g., high-Tc cuprates. However, often, a TM ion possesses
an orbital degeneracy in addition to that of spin origin.
Typically, the orbitals form a long-range-ordered pattern,
driven by Jahn-Teller or exchange interactions, and, being
subject to a discrete symmetry, behave more like static
(classical) objects compared to their spin partners. Orbital
ordering may stabilize various types of magnetic phases
[5], as well as spin gapped states without any long-range
spin order [6,7]. In other circumstances, the situation can
be opposite: the orbitals may remain in a liquid state down
to the lowest temperatures, while the spins are slowly
fluctuating about a long-range-ordered state [8,9].

In this Letter, we discuss yet another situation, when a
strong relativistic spin-orbit (SO) coupling entangles lo-
cally the spin and orbital degrees of freedom. The physics
of such systems may drastically differ from that of com-
pounds where SO coupling is of a perturbative nature, as
the form of magnetic interactions is no longer dictated by a
global spin SUð2Þ symmetry alone. The effects of a strong
SO interaction on magnetic phenomena has been discussed
in the pioneering works by Kanamori on Fe2þ and Co2þ

compounds [10]. In recent years, there has been a revival of
interest in SO coupling in the context of exchange inter-
actions [11–13], magnetoelectric [14] and spin Hall effects
[15], Fermi-surface topology [16], etc.

The SO coupling is strong for the late TM ions such as Ir,
Os, Rh, Ru. Indeed, optical data on Ir4þ impurities in
SrTiO3 suggest a fairly high value of the SO coupling !$
380 meV [17]. This far exceeds possible intersite interac-

tions between the t2g orbitals and spins in the insulating
iridates, and hence is able to lock them together forming a
total angular momentum locally. In the following, we focus
on the systems composed of magnetic ions with a single
hole in a threefold degenerate t2g-level, a low spin state of
d5-configuration, such as Ir4þ or Rh4þ ions in a strong
octahedral field. We formulate a superexchange theory for
such systems and show that together with conventional
interactions of Heisenberg form, more exotic spin models
such as the quantum compass model naturally appear as
low energy Hamiltonians. We suggest how to implement in
such Mott insulators an exactly solvable model proposed
by Kitaev [18], which exhibit exotic anyonic excitations
with fractional statistics. We apply the present theory to the
insulating iridium compound Sr2IrO4 [19–22] exhibiting
‘‘weak’’ ferromagnetism (FM) with an anomalously large
FM moment.
Single ion Kramers doublet.—We first introduce the

local magnetic degrees of freedom. In the low spin d5

configuration a hole resides in t2g manifold of xy, xz, yz
orbitals, and has an effective angular momentum l ¼ 1
[23]: jlz ¼ 0i & jxyi, jlz ¼ '1i & ( 1ffiffi

2
p ðijxzi' jyziÞ.

The total moment ~M ¼ 2~s( ~l, where ~s is a hole spin

operator. The single ion Hamiltonian H0 ¼ !~l ) ~sþ!l2z
consists of a SO coupling with !> 0 and a possible
tetragonal splitting! of the t2g levels.!> 0 for an oxygen
octahedron elongated along the z k c-axis. The lowest
energy level of H0 is a Kramers doublet of isospin states
j~"i and j~#i:

j~"i ¼ sin"j0; "i( cos"jþ 1; #i;
j~#i ¼ sin"j0; #i( cos"j( 1; "i:

(1)

Angle " parameterizes the relative strength of the tetrago-
nal splitting, with tanð2"Þ ¼ 2

ffiffiffi
2

p
!=ð!( 2!Þ. Notice that

the wave functions of the Kramers doublet are given by a
coherent superposition of different orbital and spin states,
leading to a peculiar distribution of spin densities in real
space (see Fig. 1). This will have important consequences
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for the symmetry of the intersite interactions. Namely, the
very form of the exchange Hamiltonian depends on bond
geometry through a density profile of Kramers states, as we
demonstrate below.

Exchange couplings of neighboring Kramers states.—
We consider the limit of the strong spin-orbit coupling, i.e.,
when ! is larger than exchange interaction between the
isospins. The exchange Hamiltonians for isospins are then
obtained by projecting the corresponding superexchange
spin-orbital models onto the isospin states Eq. (1). First, we
present the results for the case of cubic symmetry (! ¼ 0,
sin" ¼ 1=

ffiffiffi
3

p
), and discuss later the effects of a tetragonal

distortion. We consider two common cases of TM-O-TM
bond geometries: (A) a 180"-bond formed by corner-
shared octahedra as in Fig. 2(a), and (B) a 90"-bond
formed by edge-shared ones, Fig. 2(b).

(A) A 180" bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital space
and, on a given bond, only two orbitals are active, e.g., jxyi
and jxzi orbitals along a bond in x-direction [Fig. 2(a)].
The spin-orbital exchange Hamiltonian for such a system
has already been reported: see Eq. (3.11) in Ref. [12]. After
projecting it onto the ground state doublet, we find an
exchange Hamiltonian for isospins in a form of

Heisenberg plus a pseudodipolar interaction,

H ij ¼ J1 ~Si # ~Sj þ J2ð ~Si # ~rijÞð~rij # ~SjÞ; (2)

where ~Si is the S ¼ 1=2 operator for isospins (referred to as
simply spins from now on), ~rij is the unit vector along the
ij bond, and J1ð2Þ ¼ 4

9#1ð2Þ. Hereafter, we use the energy
scale 4t2=U where t is a dd-transfer integral through an
intermediate oxygen, and U stands for the Coulomb re-
pulsion on the same orbitals. The parameters #1ð2Þ control-
ling isotropic (anisotropic) couplings are given by
#1 ¼ ð3r1 þ r2 þ 2r3Þ=6 and #2 ¼ ðr1 ' r2Þ=4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio $ ¼ JH=U of
Hund’s coupling and U [24]. At small $, one has #1 ’ 1
and #2 ’ $=2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolarlike anisotropy term.
While the overall form of Eq. (2) could be anticipated
from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO coupling,
the magnetic degrees are governed by a nearly Heisenberg
model just like in the case of small !, and, surprisingly
enough, its anisotropy is entirely due to the Hund’s cou-
pling. This is opposite to a conventional situation: typi-
cally, the anisotropy corrections are obtained in powers of
! while the Hund’s coupling is not essential.
(B) A 90" bond: There are again only two orbitals active

on a given bond, e.g., jxzi and jyzi orbitals along a bond in
the xy-plane. However, the hopping matrix has now only
nondiagonal elements, and there are two possible paths for
a charge transfer [via upper or lower oxygen, see Fig. 2(b)].
This peculiarity of a 90" bond leads to an exchange
Hamiltonian drastically different from that of a 180" ge-
ometry. Two transfer amplitudes via upper and lower oxy-
gen interfere in a destructive manner and the isotropic part
of the Hamiltonian exactly vanishes. The finite, anisotropic
interaction appears, however, due to the JH-multiplet struc-
ture of the excited levels. Most importantly, the very form
of the exchange interaction depends on the spatial orienta-
tion of a given bond. We label a bond ij laying in the %&
plane perpendicular to the 'ð¼ x; y; zÞ axis by a (')-bond.
With this in mind, the Hamiltonian can be written as

H ð'Þ
ij ¼ 'JS'i S

'
j ; (3)

with J ¼ 4
3#2. Remarkably, this Hamiltonian is precisely a

quantum analog of the so-called compass model. The latter,
introduced originally for the orbital degrees of freedom in
Jahn-Teller systems [5], has been the subject of numerous
studies as a prototype model with protected ground state
degeneracy of topological origin (see, e.g., Ref. [25]).
However, to our knowledge, no magnetic realization of
the compass model has been proposed so far.
Implementing the Kitaev model in Mott insulators.—The

Kitaev model is equivalent to a quantum compass model on
a honeycomb lattice [26]. It shows a number of fascinating
properties such as anyonic excitations with exotic frac-

isospin up spin up, lz=0 spin down, lz=1

+=

FIG. 1 (color online). Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition of a
spin up hole density in jxyi-orbital, lz ¼ 0 (middle), and spin
down one in ðjyziþ ijxziÞ state, lz ¼ 1 (right).

pyxy xy

pzxz xz
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xz yz
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FIG. 2 (color online). Two possible geometries of a TM-O-TM
bond with corresponding orbitals active along these bonds. The
large (small) dots stand for the transition metal (oxygen) ions.
(a) A 180"-bond formed by corner-shared octahedra, and (b) a
90"-bond formed by edge-shared octahedra.
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tional statistics, topological degeneracy, and, in particular,
it is relevant for quantum computation [18]. This generated
an enormous interest in a possible realization of this model
in real systems, with current proposals based on optical
lattices [27]. Here, we outline how to ‘‘engineer’’ the
Kitaev model in Mott insulators.

Shown in Fig. 3(a) is a triangular unit formed by 90!

bonds together with ‘‘compass’’ interactions that follow
from Eq. (3). Such a structure is common for a number of
oxides, e.g., layered compounds ABO2 (where A and B are
alkali and TM ions, respectively). The triangular lattice of
magnetic ions in an ABO2 structure can be depleted down
to a honeycomb lattice (by periodic replacements of TM
ions with nonmagnetic ones). One then obtains an A2BO3

compound, which has a hexagonal unit shown in Fig. 3(b).
There are three nonequivalent bonds, each being perpen-
dicular to one of the cubic axes x, y, z. Then, according to
Eq. (3), the spin coupling, e.g., on a (x)-bond, is of Sxi S

x
j

type, precisely as in the Kitaev model. The honeycomb
lattice provides a particularly striking example of new
physics introduced by strong SO coupling: the
Heisenberg model is converted into the Kitaev model
with a spin-liquid ground state.

The compound Li2RuO3 [28] represents a physical ex-
ample of the A2BO3 structure. By replacement of spin-one
Ru4þ with spin-one-half Ir4þ ions, one may realize a
strongly spin-orbit-coupledMott insulator with low-energy
physics described by the Kitaev model.

‘‘Weak’’ ferromagnetism of Sr2IrO4.—As an example of
a spin-orbit-coupled Mott insulator, we discuss the layered
compound Sr2IrO4, a t2g analog of the undoped high-Tc

cuprate La2CuO4. In Sr2IrO4, a square lattice of Ir
4þ ions is

formed by corner-shared IrO6 octahedra, elongated along
the c-axis and rotated about it by ! ’ 11! [19] (see Fig. 4).
Sr2IrO4 undergoes a magnetic transition at #240 K dis-

playing a weak FM, which can be ascribed to a
Dzyaloshinsky-Moriya (DM) interaction. The puzzling
fact is that ‘‘weak’’ FM moment is unusually large,
’ 0:14"B [20] which is 2 orders of magnitude larger
than that in La2CuO4 [29]. A corresponding spin canting
angle # ’ 8! is close to !, i.e., the ordered spins seem to
rigidly follow the staggered rotations of octahedra. Here,
we show that the strong SO coupling scenario gives a
natural explanation of this observation.
We first show the dominant part of the Hamiltonian for

Sr2IrO4 neglecting the Hund’s coupling for a moment.
Accounting for the rotations of IrO6 octahedra, we find

H ¼ J ~Si % ~Sj þ JzS
z
iS

z
j þ ~D % ½ ~Si ' ~Sj(: (4)

Here, the isotropic coupling J ¼ $1ðt2s * t2aÞ, where ts ¼
sin2%þ 1

2 cos
2% cos2!, and ta ¼ 1

2 cos
2% sin2!. The second

and third terms describe the symmetric and DM anisotro-
pies, with Jz ¼ 2$1t

2
a, ~D ¼ ð0; 0;*DÞ, and D ¼ 2$1tsta.

[For ! ¼ 0, these terms vanish and we recover J1-term of
the 180! result (2).] As it follows from Eq. (4), the spin
canting angle is given by a ratio D=J ’ 2ta=ts # 2!which
is independent of &, and is solely determined by lattice
distortions. This explains the large spin canting angle ##
! in Sr2IrO4.
As in the case of weak SO coupling [30], the

Hamiltonian (4) can in fact be mapped to the Heisenberg

model ~~Si % ~~Sj where operators ~~S are obtained by a stag-

gered rotation of ~S around the z-axis by an angle,#, with
tanð2#Þ ¼ D=J. Thus, at JH ¼ 0, there is no true magnetic
anisotropy. Once JH-corrections are included, the
Hamiltonian receives also the anisotropic terms,

Syy
2 3S

Sx x
1 2S

SSz z
1 3 (b)

xx

zz

yy

(a)

y

z

x

1

3

2

FIG. 3 (color online). Examples of the structural units formed
by 90! TM-O-TM bonds and corresponding spin-coupling pat-
terns. Gray circles stand for magnetic ions, and small open
circles denote oxygen sites. (a) Triangular unit cell of
ABO2-type layered compounds, periodic sequence of this unit
forms a triangular lattice of magnetic ions. The model (3) on this
structure is a realization of a quantum compass model on a
triangular lattice: e.g., on a bond 1-2, laying perpendicular to
x-axis, the interaction is Sx1S

x
2. (b) Hexagonal unit cell of

A2BO3-type layered compound, in which magnetic ions
(B-sites) form a honeycomb lattice. (Black dot: nonmagnetic
A-site). On an xx-bond, the interaction is Sxi S

x
j , etc. For this

structure, the model (3) is identical to the Kitaev model.
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θ
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z

FIG. 4. The spin canting angle # (in units of !) as a function
of the tetragonal distortion parameter %. Inset shows a sketch of
an IrO2-plane. The oxygen octahedra are rotated by an angle,!
about z-axis forming a two sublattice structure. In the cubic case,
% ’ '=5, one has # ¼ ! exactly. The spin-flop transition from
the in-plane canted spin state to a collinear Néel ordering along
z-axis occurs at % ¼ '=4.
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In the limit of large Hubbard U, one hole is localized on each 
d5 metal atom, and the low-energy degrees of freedom are 
the local jeff =

1
2 local magnetic moments. Given their spin-

orbital nature, the interactions between such local moments 
are generally highly anisotropic [18] and can be cast into the 
form:

H =
∑

ij

Jij Si · Sj + Dij · (Si × Sj) + Si · Γij · Sj (6)

where Jij is the isotropic Heisenberg coupling, Dij  is the 
Dzyaloshinskii–Moriya (DM) vector, and Γij is the symmetric 
pseudo-dipolar tensor. Realization of the pure Kitaev model 
requires that Jij, Dij → 0 for every bond, while only one 
comp onent of the Γij tensor must remain nonzero (i.e. Γzz != 0 
for the Z-bond).

At !rst, such strict conditions may appear dif!cult to engi-
neer in real materials, particularly because the leading contrib-
utions to the interactions (i.e. at order t2/U) are known to 
satisfy a hidden symmetry [19, 20] Γij ∝ Dij ⊗ Dij. This hid-
den symmetry is only violated by higher order contrib utions, 
for example, at order t2JH/U2, where JH is the strength of 
Hund’s coupling. As a result, for those bonds where the DM 
interaction vanishes by symmetry, Γij also tends to be small. 
Inversion-symmetric bonds are therefore typically dominated 
by isotropic Heisenberg terms Jij ∼ t2/U  unless special cir-
cumstances are achieved. This result applies equally for the 
limits of both weak and strong spin–orbit coupling.

For d5 !lling, the inclusion of Hund’s coupling within 
the t2g orbitals allows particular compass terms to appear in 
the absence of DM-interactions in both corner-sharing [21] 
and edge-sharing [4] geometries. Essentially, spin–orbit 

entanglement transfers the bond-directional nature of orbit-
als into that of pseudospins [17]. Investigation of this effect 
led Khaliullin [17] and later Jackeli and Khaliullin [4] to par-
ticularly important conclusions in the context of the Kitaev 
exchange. These authors showed, for idealized edge-sharing 
octahedra with inversion symmetry, that (i) all leading order 
contributions  ∼t2/U  to the interactions vanish, (ii) Jij and Dij  
are identically zero up to the next higher order  ∼t2JH/U2, and 
(iii) the only nonzero component of Γij arising from these 
higher order ∼t2JH/U2 effects is precisely the desired Kitaev 
term. This amazing insight spawned the entire !eld of research 
reviewed in this work.

In particular, Jackeli and Khaliullin considered the case 
where hopping between edge-sharing metal sites occurs only 
via hybridization with the intervening ligand p-orbitals. In this 
case, the hopping paths shown in !gure 2(b) interfere, so that 
hopping of holes between jeff =

1
2 states vanishes. In fact, the 

only relevant hopping takes a hole from a jeff =
1
2 state to an 

mj = ± 3
2 component of the jeff =

3
2 quartet on an adjacent site 

(!gure 2(c)). In such a virtual con!guration, with two holes 
on a given site, Hund’s coupling (JH) acts between the jeff =

1
2 

and excited 3
2 moments, ultimately generating ferromagnetic 

interactions in the ground state ∝ t2JH/U2. Importantly, since 
only the extremal mj = ± 3

2 components contribute, these 
couplings become Ising-like Sγ

i Sγ
j , with principle axis (γ) 

perpend icular to the plane of the bond. This renders precisely 
the desired Kitaev interaction. For edge-sharing octahedra, 
the three bonds emerging from each metal site naturally have 
orthogonal Ising axes.

While experimental studies, reviewed below, demon-
strate the validity of Jackeli and Khaliullin’s observations, 
it remains essential to understand the modi!cations to the 
Jackeli–Khaliullin picture in real materials. Deviations from 
the ideal scenario result in a variety of complex phenomena.

2.3. Extensions for real materials

Microscopically, plausible extensions of the Jackeli–Khaliullin 
mechanism to real materials are based mostly on two obser-
vations: (i) a more accurate consideration of the coupling on 
each bond must include the effects of local dist ortions of the 
crystal !eld, direct d–d hopping, and mixing with higher lying 
states outside the t2g manifold, and (ii) the 4d and 5d orbitals 
are spatially rather extended, which may generate substantial 
longer-range exchange beyond nearest neighbours. In this 
section, we review the current understanding of each of these 
effects.

In the most general case, anisotropic magnetic interaction 
between sites i and j is described by the Hamiltonian:

Hij = Si · Jij · Sj (7)

where Jij is a 3 × 3 exchange tensor. There are different 
schemes to parametrize this tensor, which are appropriate for 
different local symmetries. Assuming local C2h symmetry of 
the ij-bond, the convention is to write the interactions:

CFS SOC

free ionOh

1 2 3

(a)

(b)

(c)

Figure 2. (a) Combined effect of crystal !eld splitting and spin–
orbit coupling (SOC) on the local d-orbital states. (b) Summary of 
hopping paths considered in the idealized edge-sharing model of 
Jackeli and Khaliullin. (c) Schematic view of virtual processes that 
lead to the emergence of the Kitaev interactions for this case.
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Hij = Jij Si · Sj + Kij Sγ
i Sγ

j + Γij

(
Sα

i Sβ
j + Sβ

i Sα
j

)

+ Γ′
ij

(
Sγ

i Sα
j + Sγ

i Sβ
j + Sα

i Sγ
j + Sβ

i Sγ
j

) 
(8)

where {α,β, γ} = {y, z, x}, {z, x, y} and {x, y, z}, for the 
X-, Y-, and Z-bonds, respectively. For lower symmetry 
local environments, further terms may also be required to 
fully parameterize the interactions. For example, a !nite 
Dzyaloshinskii–Moriya interaction Dij · (Si × Sj) is symme-
try permitted for second-neighbour interactions in all Kitaev 
candidate lattices, as well as certain !rst-neighbour bonds in 
the 3D materials.

Before reviewing the origin of these additional interac-
tions, we remark that the phase diagram of equation (8) has 
been studied in detail in various parameter regimes. The !rst 
works considered the simplest extension to Kitaev’s model on 
the honeycomb lattice, namely the addition of a nearest neigh-
bour J1 term to yield the Heisenberg–Kitaev (HK) model, 
which has now been studied at the classical and quantum 
levels, both at zero [22–26], and !nite temperature [27–29], 
as well as !nite magnetic !eld [30–32]. The effects of !nite 
off-diagonal nearest-neighbour interactions Γ1 and Γ′

1 were 
later considered [23, 33–35], along with longer range second 
neighbour Kitaev K2 terms [36], and Heisenberg J2, J3 inter-
actions [37, 38]. These works have revealed, in addition to 
the Kitaev spin-liquid states appearing for large nearest neigh-
bour Kitaev |K1| interactions, a complex variety of interesting 
magnetically ordered states, which are selected by the various 
competing anisotropic interactions. A relatively comprehen-
sive view of these phases, in relation to the real materials, has 
now emerged from detailed analysis of the parameter regimes 
thought to be relevant to various materials [39–45]. The 
interested reader is referred to these works. Finally, signi!-
cant interest in Kitaev-like models on other lattices has been 
prompted by the study of materials detailed in sections 3.1 and 
4. For example, a variety of theoretical works focusing on the 
3D honeycomb derivatives [46–51] have now appeared, along 
with studies on the 2D triangular lattice [17, 52–55], and oth-
ers [56].

2.3.1. Local distortions. In real materials, distortion of the 
local crystal !eld environment away from perfect octahedral 
geometry reduces the point group symmetry at each metal 
atom from the ideal Oh to C2 or C3, for example. Such lat-
tice distortions lift the degeneracy of the t2g orbitals and par-
tially quench the orbital angular momentum. This effect alters 
the nature of the 4d and 5d holes from spin–orbit entangled 
jeff =

1
2 states to states favouring a different mixture of spin 

and orbital character. Accordingly, the effective magnetic cou-
plings also interpolate between different regimes, depending 
on the strength of spin–orbit coupling in relation to the mag-
nitude of the induced t2g splitting. For example, for distortions 
that completely lift the t2g degeneracy, the local moments are 
continuously deformed into conventional pure s = 1

2 states, 
which exhibit nearly isotropic Heisenberg interactions, as 
the orbital angular momentum is progressively quenched. 

Otherwise, coupling of the spin to a partially quenched orbital 
momentum may produce alternate anisotropic exchange inter-
actions beyond the ideal Kitaev terms.

The effects of local distortions of the crystal !eld can be 
illustrated by reviewing the simplest relevant case where C3 
symmetry is retained, such as considered in [33, 38, 57]. Such 
distortions include trigonal compression or elongation of the 
octahedra, as shown in !gure 3(a). In this case, the t2g mani-
fold is split into singly degenerate a(1g) and doubly degener-
ate e(g) orbitals (for λ = 0). For λ != 0, !gure 3(b) shows the 
ground state hole occupancy as a function of ∆/λ expressed 
in both, the jeff and the t2g basis. For a distortion with a [1 1 1] 
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Figure 3. (a) Effects of trigonal distortion on the d-orbital states. 
(b) Evolution of the composition of the t2g hole with crystal !eld 
splitting. The contribution from jeff =

1
2 states remains large over a 

wide range. (c) Modi!cation of the nearest neighbour interactions 
for pure ligand-assisted (t2) hopping. (d) Induced anisotropy of the 
g-factor; ‖ refers to the normal of the honeycomb plane.
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j = ½

3λ/2

j = ½

Spin-orbit
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lr4+
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Crystal $eld

O2–

eg

3

a

b

c

Figure 1
(a) An illustration of the octahedral geometry of a transition metal site for an iridate. (b) Splitting of the 4d or
5d levels by octahedral crystal fields !Oh and by spin-orbit coupling λ into j = 1/2 and j = 3/2 levels. (c) An
illustration of the atomic j = 1/2 wave functions. The composition of the j = 1/2 states with the spin-up
charge density shown in red and the spin-down charge density in blue.

When projected into this manifold, the angular momentum of the the d electrons is mapped to a
set of effective l = 1 angular momentum operators, −L. The large SOC then acts within the t2g

manifold as −λL · S, where L is an effective l = 1 angular momentum and S is the spin. Using the
rules of addition of angular momenta, we see that SOC splits the t2g multiplet into an effective
j = 1/2 doublet and effective j = 3/2 quartet as show in Figure 1. The j = 3/2 states are lower
in energy and separated from the j = 1/2 states by a gap of 3λ/2. Written in the basis of the t2g

states, one has
∣∣∣∣
1
2
, ±1

2

〉
=

√
1
3

(|yz, ∓〉 ± i |xz, ∓〉 ± |xy,±〉) , 1a.

∣∣∣∣
3
2
, ±3

2

〉
=

√
1
2

(|yz, ±〉 ± i |xz, ±〉) , 1b.

∣∣∣∣
3
2
, ±1

2

〉
=

√
1
6

(|yz, ∓〉 ± i |xz, ∓〉 − 2 |xy, ±〉) , 1c.

where |yz, ±〉 , |xz, ±〉, and |xy, ±〉 are the t2g states, and spin-up and -down correspond to ±. The
important role played by SOC can be seen in the entanglement of the spin and orbital degrees of
freedom in these wave functions, as illustrated in Figure 1. The states of this j = 1/2 doublet
and its pseudo-spin operators J are a common thread in our discussion of the family of iridates
and ruthenium materials. Although strongly spin-orbit entangled, it remains isotropic, with a g-
factor of −2. Explicitly, the magnetic moment operator µ = µB (L + 2S) becomes −2µBJ when
projected into the j = 1/2 states. The anisotropy of these systems thus manifests predominantly
in the coupling of j = 1/2 moments (2), not in the single-ion properties.

The interactions of j = 1/2 electrons are determined by the atomic interactions of the free
ion projected into the t2g manifold and the kinetic terms, or hoppings, of the t2g electrons.
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  5d5 : Ir4+   eg. Na2IrO3
4d5 : Ru3+  eg.  RuCl3

Rau et al.,  
ARCMP 7, 195 (2016) 
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Figure	3:	Candidate	Spin	Liquid	Materials.	Crystal	structures	of	(a)	k-(ET)2Cu2(CN)3,	(b)	
herbertsmithite	,	and	(c)	a-RuCl3.		In	(a),	the	ET	dimers	(top)	form	a	triangular	lattice	(with	the	S	
=	½	degree	of	freedom	per	dimer	represented	by	red	arrows).		These	ET	molecules	are	
sandwiched	by	Cu2(CN)3	planes	(bottom).		Here,	Cu	is	in	blue,	S	in	yellow,	C	in	black,	and	N	in	
red.		In	(b),	Cu	(blue)	forms	kagome	layers	(top)	that	are	interconnected	(bottom)	by	Zn	(gray),	
with	O	in	red	(shown	in	top	only).		In	(c),	Ru	octahedra	(top)	form	honeycomb	layers	that	are	
weakly	coupled	(bottom),	with	Cl	in	green.	
 
  

(a)		k-(ET)2Cu2(CN)3 (b)		ZnCu3(OH)6Cl2 (c)		a-RuCl3

	
	
Figure	2:	Geometrically	Frustrated	Models.	(a)	kagome	lattice,	(b)	diamond	valence	bond	solid	
on	a	kagome	lattice	(122),	(c)	Kitaev	model	on	a	honeycomb	lattice,	and	(d)	bond-dependent	
Kitaev	interaction	in	a	six-fold	coordinated	transition	metal	oxide	(52).		In	(b),	red	bonds	are	
singlets,	with	blue	shading	emphasizing	the	diamonds.		In	(c)	and	(d),	x	(xx),	y	(yy),	z	(zz)	denote	
the	component	of	the	spins	involved	in	that	bond.	
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The honeycomb lattice is a bipartite lattice;

geometric frustration is not relevant
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Hij = Jij Si · Sj + Kij Sγ
i Sγ

j + Γij

(
Sα

i Sβ
j + Sβ

i Sα
j

)

+ Γ′
ij

(
Sγ

i Sα
j + Sγ

i Sβ
j + Sα

i Sγ
j + Sβ

i Sγ
j

) 
(8)

where {α,β, γ} = {y, z, x}, {z, x, y} and {x, y, z}, for the 
X-, Y-, and Z-bonds, respectively. For lower symmetry 
local environments, further terms may also be required to 
fully parameterize the interactions. For example, a !nite 
Dzyaloshinskii–Moriya interaction Dij · (Si × Sj) is symme-
try permitted for second-neighbour interactions in all Kitaev 
candidate lattices, as well as certain !rst-neighbour bonds in 
the 3D materials.

Before reviewing the origin of these additional interac-
tions, we remark that the phase diagram of equation (8) has 
been studied in detail in various parameter regimes. The !rst 
works considered the simplest extension to Kitaev’s model on 
the honeycomb lattice, namely the addition of a nearest neigh-
bour J1 term to yield the Heisenberg–Kitaev (HK) model, 
which has now been studied at the classical and quantum 
levels, both at zero [22–26], and !nite temperature [27–29], 
as well as !nite magnetic !eld [30–32]. The effects of !nite 
off-diagonal nearest-neighbour interactions Γ1 and Γ′

1 were 
later considered [23, 33–35], along with longer range second 
neighbour Kitaev K2 terms [36], and Heisenberg J2, J3 inter-
actions [37, 38]. These works have revealed, in addition to 
the Kitaev spin-liquid states appearing for large nearest neigh-
bour Kitaev |K1| interactions, a complex variety of interesting 
magnetically ordered states, which are selected by the various 
competing anisotropic interactions. A relatively comprehen-
sive view of these phases, in relation to the real materials, has 
now emerged from detailed analysis of the parameter regimes 
thought to be relevant to various materials [39–45]. The 
interested reader is referred to these works. Finally, signi!-
cant interest in Kitaev-like models on other lattices has been 
prompted by the study of materials detailed in sections 3.1 and 
4. For example, a variety of theoretical works focusing on the 
3D honeycomb derivatives [46–51] have now appeared, along 
with studies on the 2D triangular lattice [17, 52–55], and oth-
ers [56].

2.3.1. Local distortions. In real materials, distortion of the 
local crystal !eld environment away from perfect octahedral 
geometry reduces the point group symmetry at each metal 
atom from the ideal Oh to C2 or C3, for example. Such lat-
tice distortions lift the degeneracy of the t2g orbitals and par-
tially quench the orbital angular momentum. This effect alters 
the nature of the 4d and 5d holes from spin–orbit entangled 
jeff =

1
2 states to states favouring a different mixture of spin 

and orbital character. Accordingly, the effective magnetic cou-
plings also interpolate between different regimes, depending 
on the strength of spin–orbit coupling in relation to the mag-
nitude of the induced t2g splitting. For example, for distortions 
that completely lift the t2g degeneracy, the local moments are 
continuously deformed into conventional pure s = 1

2 states, 
which exhibit nearly isotropic Heisenberg interactions, as 
the orbital angular momentum is progressively quenched. 

Otherwise, coupling of the spin to a partially quenched orbital 
momentum may produce alternate anisotropic exchange inter-
actions beyond the ideal Kitaev terms.

The effects of local distortions of the crystal !eld can be 
illustrated by reviewing the simplest relevant case where C3 
symmetry is retained, such as considered in [33, 38, 57]. Such 
distortions include trigonal compression or elongation of the 
octahedra, as shown in !gure 3(a). In this case, the t2g mani-
fold is split into singly degenerate a(1g) and doubly degener-
ate e(g) orbitals (for λ = 0). For λ != 0, !gure 3(b) shows the 
ground state hole occupancy as a function of ∆/λ expressed 
in both, the jeff and the t2g basis. For a distortion with a [1 1 1] 
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Figure 3. (a) Effects of trigonal distortion on the d-orbital states. 
(b) Evolution of the composition of the t2g hole with crystal !eld 
splitting. The contribution from jeff =

1
2 states remains large over a 

wide range. (c) Modi!cation of the nearest neighbour interactions 
for pure ligand-assisted (t2) hopping. (d) Induced anisotropy of the 
g-factor; ‖ refers to the normal of the honeycomb plane.
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Figure 7
Phase diagram of the Heisenberg-Kitaev model. The model is parameterized as J = cos φ, K = sin φ, as
discussed in the main text. Squares and diamonds show points related by the Klein duality transformation.
Phases of the Heisenberg-Kitaev model are shown inside; these are the ferromagnet, antiferromagnet, stripy,
and zigzag phases.

to at least 2 meV, and there is an absence of scattering at small wave vectors and energy. Recent
diffuse magnetic X-ray scattering (77) in the paramagnetic phase has provided an experimental
confirmation of dominant Kitaev interactions, validating the theoretical arguments of Section 4.1.
These measurements show a clear locking of the spatial and spin orientations characteristic of
the bond-dependent Kitaev exchange. For α-Li2IrO3 the situation is less clear. Experimentally,
an antiferromagnetic ordering transition (71) is seen at ∼15 K, as in Na2IrO3, but α-Li2IrO3

has a smaller Curie-Weiss temperature of θCW ∼ −33 K. Although there have been reports of an
incommensurate ordering wave vector lying in the first Brillouin zone,2 the details of the magnetic
ordering pattern and the structure of the low-energy excitations remain largely unresolved.

A number of studies have tried to elucidate the properties of these materials more indi-
rectly through elemental substitution. One promising approach is to dope isoelectronically from
Na2IrO3 to α-Li2IrO3 as (Na1−xLix)2IrO3. For x ! 0.25, uniform solid solutions can be obtained,
with both TN and |θCW| suppressed with increased doping (79, 80). Although a quantum critical
point near xc ∼ 0.75 was found in Reference 79, indications of phase separation reported for the
range of 0.25 ! x ! 0.6 (80) complicate this identification. Further study is needed for x " 0.6
near the α-Li2IrO3 end of this range to clarify the issue. Another approach is dilution of Ir4+ with
nonmagnetic Ti4+ (81), forming Na2(Ir1−xTix)O3 or Li2(Ir1−xTix)O3. As the magnetic lattice of Ir

2R. Coldea, talk at the SPORE13 conference held at MPIPKS, Dresden (2013); S. Choi, talk at the APS March meeting,
Denver, CO (2014).
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In the limit of large Hubbard U, one hole is localized on each 
d5 metal atom, and the low-energy degrees of freedom are 
the local jeff =

1
2 local magnetic moments. Given their spin-

orbital nature, the interactions between such local moments 
are generally highly anisotropic [18] and can be cast into the 
form:

H =
∑

ij

Jij Si · Sj + Dij · (Si × Sj) + Si · Γij · Sj (6)

where Jij is the isotropic Heisenberg coupling, Dij  is the 
Dzyaloshinskii–Moriya (DM) vector, and Γij is the symmetric 
pseudo-dipolar tensor. Realization of the pure Kitaev model 
requires that Jij, Dij → 0 for every bond, while only one 
comp onent of the Γij tensor must remain nonzero (i.e. Γzz != 0 
for the Z-bond).

At !rst, such strict conditions may appear dif!cult to engi-
neer in real materials, particularly because the leading contrib-
utions to the interactions (i.e. at order t2/U) are known to 
satisfy a hidden symmetry [19, 20] Γij ∝ Dij ⊗ Dij. This hid-
den symmetry is only violated by higher order contrib utions, 
for example, at order t2JH/U2, where JH is the strength of 
Hund’s coupling. As a result, for those bonds where the DM 
interaction vanishes by symmetry, Γij also tends to be small. 
Inversion-symmetric bonds are therefore typically dominated 
by isotropic Heisenberg terms Jij ∼ t2/U  unless special cir-
cumstances are achieved. This result applies equally for the 
limits of both weak and strong spin–orbit coupling.

For d5 !lling, the inclusion of Hund’s coupling within 
the t2g orbitals allows particular compass terms to appear in 
the absence of DM-interactions in both corner-sharing [21] 
and edge-sharing [4] geometries. Essentially, spin–orbit 

entanglement transfers the bond-directional nature of orbit-
als into that of pseudospins [17]. Investigation of this effect 
led Khaliullin [17] and later Jackeli and Khaliullin [4] to par-
ticularly important conclusions in the context of the Kitaev 
exchange. These authors showed, for idealized edge-sharing 
octahedra with inversion symmetry, that (i) all leading order 
contributions  ∼t2/U  to the interactions vanish, (ii) Jij and Dij  
are identically zero up to the next higher order  ∼t2JH/U2, and 
(iii) the only nonzero component of Γij arising from these 
higher order ∼t2JH/U2 effects is precisely the desired Kitaev 
term. This amazing insight spawned the entire !eld of research 
reviewed in this work.

In particular, Jackeli and Khaliullin considered the case 
where hopping between edge-sharing metal sites occurs only 
via hybridization with the intervening ligand p-orbitals. In this 
case, the hopping paths shown in !gure 2(b) interfere, so that 
hopping of holes between jeff =

1
2 states vanishes. In fact, the 

only relevant hopping takes a hole from a jeff =
1
2 state to an 

mj = ± 3
2 component of the jeff =

3
2 quartet on an adjacent site 

(!gure 2(c)). In such a virtual con!guration, with two holes 
on a given site, Hund’s coupling (JH) acts between the jeff =

1
2 

and excited 3
2 moments, ultimately generating ferromagnetic 

interactions in the ground state ∝ t2JH/U2. Importantly, since 
only the extremal mj = ± 3

2 components contribute, these 
couplings become Ising-like Sγ

i Sγ
j , with principle axis (γ) 

perpend icular to the plane of the bond. This renders precisely 
the desired Kitaev interaction. For edge-sharing octahedra, 
the three bonds emerging from each metal site naturally have 
orthogonal Ising axes.

While experimental studies, reviewed below, demon-
strate the validity of Jackeli and Khaliullin’s observations, 
it remains essential to understand the modi!cations to the 
Jackeli–Khaliullin picture in real materials. Deviations from 
the ideal scenario result in a variety of complex phenomena.

2.3. Extensions for real materials

Microscopically, plausible extensions of the Jackeli–Khaliullin 
mechanism to real materials are based mostly on two obser-
vations: (i) a more accurate consideration of the coupling on 
each bond must include the effects of local dist ortions of the 
crystal !eld, direct d–d hopping, and mixing with higher lying 
states outside the t2g manifold, and (ii) the 4d and 5d orbitals 
are spatially rather extended, which may generate substantial 
longer-range exchange beyond nearest neighbours. In this 
section, we review the current understanding of each of these 
effects.

In the most general case, anisotropic magnetic interaction 
between sites i and j is described by the Hamiltonian:

Hij = Si · Jij · Sj (7)

where Jij is a 3 × 3 exchange tensor. There are different 
schemes to parametrize this tensor, which are appropriate for 
different local symmetries. Assuming local C2h symmetry of 
the ij-bond, the convention is to write the interactions:

CFS SOC

free ionOh

1 2 3

(a)

(b)

(c)

Figure 2. (a) Combined effect of crystal !eld splitting and spin–
orbit coupling (SOC) on the local d-orbital states. (b) Summary of 
hopping paths considered in the idealized edge-sharing model of 
Jackeli and Khaliullin. (c) Schematic view of virtual processes that 
lead to the emergence of the Kitaev interactions for this case.

J. Phys.: Condens. Matter 29 (2017) 493002
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Hij = Jij Si · Sj + Kij Sγ
i Sγ

j + Γij

(
Sα

i Sβ
j + Sβ

i Sα
j

)

+ Γ′
ij

(
Sγ

i Sα
j + Sγ

i Sβ
j + Sα

i Sγ
j + Sβ

i Sγ
j

) 
(8)

where {α,β, γ} = {y, z, x}, {z, x, y} and {x, y, z}, for the 
X-, Y-, and Z-bonds, respectively. For lower symmetry 
local environments, further terms may also be required to 
fully parameterize the interactions. For example, a !nite 
Dzyaloshinskii–Moriya interaction Dij · (Si × Sj) is symme-
try permitted for second-neighbour interactions in all Kitaev 
candidate lattices, as well as certain !rst-neighbour bonds in 
the 3D materials.

Before reviewing the origin of these additional interac-
tions, we remark that the phase diagram of equation (8) has 
been studied in detail in various parameter regimes. The !rst 
works considered the simplest extension to Kitaev’s model on 
the honeycomb lattice, namely the addition of a nearest neigh-
bour J1 term to yield the Heisenberg–Kitaev (HK) model, 
which has now been studied at the classical and quantum 
levels, both at zero [22–26], and !nite temperature [27–29], 
as well as !nite magnetic !eld [30–32]. The effects of !nite 
off-diagonal nearest-neighbour interactions Γ1 and Γ′

1 were 
later considered [23, 33–35], along with longer range second 
neighbour Kitaev K2 terms [36], and Heisenberg J2, J3 inter-
actions [37, 38]. These works have revealed, in addition to 
the Kitaev spin-liquid states appearing for large nearest neigh-
bour Kitaev |K1| interactions, a complex variety of interesting 
magnetically ordered states, which are selected by the various 
competing anisotropic interactions. A relatively comprehen-
sive view of these phases, in relation to the real materials, has 
now emerged from detailed analysis of the parameter regimes 
thought to be relevant to various materials [39–45]. The 
interested reader is referred to these works. Finally, signi!-
cant interest in Kitaev-like models on other lattices has been 
prompted by the study of materials detailed in sections 3.1 and 
4. For example, a variety of theoretical works focusing on the 
3D honeycomb derivatives [46–51] have now appeared, along 
with studies on the 2D triangular lattice [17, 52–55], and oth-
ers [56].

2.3.1. Local distortions. In real materials, distortion of the 
local crystal !eld environment away from perfect octahedral 
geometry reduces the point group symmetry at each metal 
atom from the ideal Oh to C2 or C3, for example. Such lat-
tice distortions lift the degeneracy of the t2g orbitals and par-
tially quench the orbital angular momentum. This effect alters 
the nature of the 4d and 5d holes from spin–orbit entangled 
jeff =

1
2 states to states favouring a different mixture of spin 

and orbital character. Accordingly, the effective magnetic cou-
plings also interpolate between different regimes, depending 
on the strength of spin–orbit coupling in relation to the mag-
nitude of the induced t2g splitting. For example, for distortions 
that completely lift the t2g degeneracy, the local moments are 
continuously deformed into conventional pure s = 1

2 states, 
which exhibit nearly isotropic Heisenberg interactions, as 
the orbital angular momentum is progressively quenched. 

Otherwise, coupling of the spin to a partially quenched orbital 
momentum may produce alternate anisotropic exchange inter-
actions beyond the ideal Kitaev terms.

The effects of local distortions of the crystal !eld can be 
illustrated by reviewing the simplest relevant case where C3 
symmetry is retained, such as considered in [33, 38, 57]. Such 
distortions include trigonal compression or elongation of the 
octahedra, as shown in !gure 3(a). In this case, the t2g mani-
fold is split into singly degenerate a(1g) and doubly degener-
ate e(g) orbitals (for λ = 0). For λ != 0, !gure 3(b) shows the 
ground state hole occupancy as a function of ∆/λ expressed 
in both, the jeff and the t2g basis. For a distortion with a [1 1 1] 
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Figure 3. (a) Effects of trigonal distortion on the d-orbital states. 
(b) Evolution of the composition of the t2g hole with crystal !eld 
splitting. The contribution from jeff =

1
2 states remains large over a 

wide range. (c) Modi!cation of the nearest neighbour interactions 
for pure ligand-assisted (t2) hopping. (d) Induced anisotropy of the 
g-factor; ‖ refers to the normal of the honeycomb plane.
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Figure 7
Phase diagram of the Heisenberg-Kitaev model. The model is parameterized as J = cos φ, K = sin φ, as
discussed in the main text. Squares and diamonds show points related by the Klein duality transformation.
Phases of the Heisenberg-Kitaev model are shown inside; these are the ferromagnet, antiferromagnet, stripy,
and zigzag phases.

to at least 2 meV, and there is an absence of scattering at small wave vectors and energy. Recent
diffuse magnetic X-ray scattering (77) in the paramagnetic phase has provided an experimental
confirmation of dominant Kitaev interactions, validating the theoretical arguments of Section 4.1.
These measurements show a clear locking of the spatial and spin orientations characteristic of
the bond-dependent Kitaev exchange. For α-Li2IrO3 the situation is less clear. Experimentally,
an antiferromagnetic ordering transition (71) is seen at ∼15 K, as in Na2IrO3, but α-Li2IrO3

has a smaller Curie-Weiss temperature of θCW ∼ −33 K. Although there have been reports of an
incommensurate ordering wave vector lying in the first Brillouin zone,2 the details of the magnetic
ordering pattern and the structure of the low-energy excitations remain largely unresolved.

A number of studies have tried to elucidate the properties of these materials more indi-
rectly through elemental substitution. One promising approach is to dope isoelectronically from
Na2IrO3 to α-Li2IrO3 as (Na1−xLix)2IrO3. For x ! 0.25, uniform solid solutions can be obtained,
with both TN and |θCW| suppressed with increased doping (79, 80). Although a quantum critical
point near xc ∼ 0.75 was found in Reference 79, indications of phase separation reported for the
range of 0.25 ! x ! 0.6 (80) complicate this identification. Further study is needed for x " 0.6
near the α-Li2IrO3 end of this range to clarify the issue. Another approach is dilution of Ir4+ with
nonmagnetic Ti4+ (81), forming Na2(Ir1−xTix)O3 or Li2(Ir1−xTix)O3. As the magnetic lattice of Ir

2R. Coldea, talk at the SPORE13 conference held at MPIPKS, Dresden (2013); S. Choi, talk at the APS March meeting,
Denver, CO (2014).

210 Rau · Lee · Kee

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r P
hy

s. 
20

16
.7

:1
95

-2
21

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
 A

cc
es

s p
ro

vi
de

d 
by

 M
cM

as
te

r U
ni

ve
rs

ity
 o

n 
06

/0
3/

22
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 

Kitaev Physics 

on a 2D Honeycomb Lattice

Topical Review

3

In the limit of large Hubbard U, one hole is localized on each 
d5 metal atom, and the low-energy degrees of freedom are 
the local jeff =

1
2 local magnetic moments. Given their spin-

orbital nature, the interactions between such local moments 
are generally highly anisotropic [18] and can be cast into the 
form:

H =
∑

ij

Jij Si · Sj + Dij · (Si × Sj) + Si · Γij · Sj (6)

where Jij is the isotropic Heisenberg coupling, Dij  is the 
Dzyaloshinskii–Moriya (DM) vector, and Γij is the symmetric 
pseudo-dipolar tensor. Realization of the pure Kitaev model 
requires that Jij, Dij → 0 for every bond, while only one 
comp onent of the Γij tensor must remain nonzero (i.e. Γzz != 0 
for the Z-bond).

At !rst, such strict conditions may appear dif!cult to engi-
neer in real materials, particularly because the leading contrib-
utions to the interactions (i.e. at order t2/U) are known to 
satisfy a hidden symmetry [19, 20] Γij ∝ Dij ⊗ Dij. This hid-
den symmetry is only violated by higher order contrib utions, 
for example, at order t2JH/U2, where JH is the strength of 
Hund’s coupling. As a result, for those bonds where the DM 
interaction vanishes by symmetry, Γij also tends to be small. 
Inversion-symmetric bonds are therefore typically dominated 
by isotropic Heisenberg terms Jij ∼ t2/U  unless special cir-
cumstances are achieved. This result applies equally for the 
limits of both weak and strong spin–orbit coupling.

For d5 !lling, the inclusion of Hund’s coupling within 
the t2g orbitals allows particular compass terms to appear in 
the absence of DM-interactions in both corner-sharing [21] 
and edge-sharing [4] geometries. Essentially, spin–orbit 

entanglement transfers the bond-directional nature of orbit-
als into that of pseudospins [17]. Investigation of this effect 
led Khaliullin [17] and later Jackeli and Khaliullin [4] to par-
ticularly important conclusions in the context of the Kitaev 
exchange. These authors showed, for idealized edge-sharing 
octahedra with inversion symmetry, that (i) all leading order 
contributions  ∼t2/U  to the interactions vanish, (ii) Jij and Dij  
are identically zero up to the next higher order  ∼t2JH/U2, and 
(iii) the only nonzero component of Γij arising from these 
higher order ∼t2JH/U2 effects is precisely the desired Kitaev 
term. This amazing insight spawned the entire !eld of research 
reviewed in this work.

In particular, Jackeli and Khaliullin considered the case 
where hopping between edge-sharing metal sites occurs only 
via hybridization with the intervening ligand p-orbitals. In this 
case, the hopping paths shown in !gure 2(b) interfere, so that 
hopping of holes between jeff =

1
2 states vanishes. In fact, the 

only relevant hopping takes a hole from a jeff =
1
2 state to an 

mj = ± 3
2 component of the jeff =

3
2 quartet on an adjacent site 

(!gure 2(c)). In such a virtual con!guration, with two holes 
on a given site, Hund’s coupling (JH) acts between the jeff =

1
2 

and excited 3
2 moments, ultimately generating ferromagnetic 

interactions in the ground state ∝ t2JH/U2. Importantly, since 
only the extremal mj = ± 3

2 components contribute, these 
couplings become Ising-like Sγ

i Sγ
j , with principle axis (γ) 

perpend icular to the plane of the bond. This renders precisely 
the desired Kitaev interaction. For edge-sharing octahedra, 
the three bonds emerging from each metal site naturally have 
orthogonal Ising axes.

While experimental studies, reviewed below, demon-
strate the validity of Jackeli and Khaliullin’s observations, 
it remains essential to understand the modi!cations to the 
Jackeli–Khaliullin picture in real materials. Deviations from 
the ideal scenario result in a variety of complex phenomena.

2.3. Extensions for real materials

Microscopically, plausible extensions of the Jackeli–Khaliullin 
mechanism to real materials are based mostly on two obser-
vations: (i) a more accurate consideration of the coupling on 
each bond must include the effects of local dist ortions of the 
crystal !eld, direct d–d hopping, and mixing with higher lying 
states outside the t2g manifold, and (ii) the 4d and 5d orbitals 
are spatially rather extended, which may generate substantial 
longer-range exchange beyond nearest neighbours. In this 
section, we review the current understanding of each of these 
effects.

In the most general case, anisotropic magnetic interaction 
between sites i and j is described by the Hamiltonian:

Hij = Si · Jij · Sj (7)

where Jij is a 3 × 3 exchange tensor. There are different 
schemes to parametrize this tensor, which are appropriate for 
different local symmetries. Assuming local C2h symmetry of 
the ij-bond, the convention is to write the interactions:

CFS SOC

free ionOh

1 2 3

(a)

(b)

(c)

Figure 2. (a) Combined effect of crystal !eld splitting and spin–
orbit coupling (SOC) on the local d-orbital states. (b) Summary of 
hopping paths considered in the idealized edge-sharing model of 
Jackeli and Khaliullin. (c) Schematic view of virtual processes that 
lead to the emergence of the Kitaev interactions for this case.
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In the limit of large Hubbard U, one hole is localized on each 
d5 metal atom, and the low-energy degrees of freedom are 
the local jeff =

1
2 local magnetic moments. Given their spin-

orbital nature, the interactions between such local moments 
are generally highly anisotropic [18] and can be cast into the 
form:

H =
∑

ij

Jij Si · Sj + Dij · (Si × Sj) + Si · Γij · Sj (6)

where Jij is the isotropic Heisenberg coupling, Dij  is the 
Dzyaloshinskii–Moriya (DM) vector, and Γij is the symmetric 
pseudo-dipolar tensor. Realization of the pure Kitaev model 
requires that Jij, Dij → 0 for every bond, while only one 
comp onent of the Γij tensor must remain nonzero (i.e. Γzz != 0 
for the Z-bond).

At !rst, such strict conditions may appear dif!cult to engi-
neer in real materials, particularly because the leading contrib-
utions to the interactions (i.e. at order t2/U) are known to 
satisfy a hidden symmetry [19, 20] Γij ∝ Dij ⊗ Dij. This hid-
den symmetry is only violated by higher order contrib utions, 
for example, at order t2JH/U2, where JH is the strength of 
Hund’s coupling. As a result, for those bonds where the DM 
interaction vanishes by symmetry, Γij also tends to be small. 
Inversion-symmetric bonds are therefore typically dominated 
by isotropic Heisenberg terms Jij ∼ t2/U  unless special cir-
cumstances are achieved. This result applies equally for the 
limits of both weak and strong spin–orbit coupling.

For d5 !lling, the inclusion of Hund’s coupling within 
the t2g orbitals allows particular compass terms to appear in 
the absence of DM-interactions in both corner-sharing [21] 
and edge-sharing [4] geometries. Essentially, spin–orbit 

entanglement transfers the bond-directional nature of orbit-
als into that of pseudospins [17]. Investigation of this effect 
led Khaliullin [17] and later Jackeli and Khaliullin [4] to par-
ticularly important conclusions in the context of the Kitaev 
exchange. These authors showed, for idealized edge-sharing 
octahedra with inversion symmetry, that (i) all leading order 
contributions  ∼t2/U  to the interactions vanish, (ii) Jij and Dij  
are identically zero up to the next higher order  ∼t2JH/U2, and 
(iii) the only nonzero component of Γij arising from these 
higher order ∼t2JH/U2 effects is precisely the desired Kitaev 
term. This amazing insight spawned the entire !eld of research 
reviewed in this work.

In particular, Jackeli and Khaliullin considered the case 
where hopping between edge-sharing metal sites occurs only 
via hybridization with the intervening ligand p-orbitals. In this 
case, the hopping paths shown in !gure 2(b) interfere, so that 
hopping of holes between jeff =

1
2 states vanishes. In fact, the 

only relevant hopping takes a hole from a jeff =
1
2 state to an 

mj = ± 3
2 component of the jeff =

3
2 quartet on an adjacent site 

(!gure 2(c)). In such a virtual con!guration, with two holes 
on a given site, Hund’s coupling (JH) acts between the jeff =

1
2 

and excited 3
2 moments, ultimately generating ferromagnetic 

interactions in the ground state ∝ t2JH/U2. Importantly, since 
only the extremal mj = ± 3

2 components contribute, these 
couplings become Ising-like Sγ

i Sγ
j , with principle axis (γ) 

perpend icular to the plane of the bond. This renders precisely 
the desired Kitaev interaction. For edge-sharing octahedra, 
the three bonds emerging from each metal site naturally have 
orthogonal Ising axes.

While experimental studies, reviewed below, demon-
strate the validity of Jackeli and Khaliullin’s observations, 
it remains essential to understand the modi!cations to the 
Jackeli–Khaliullin picture in real materials. Deviations from 
the ideal scenario result in a variety of complex phenomena.

2.3. Extensions for real materials

Microscopically, plausible extensions of the Jackeli–Khaliullin 
mechanism to real materials are based mostly on two obser-
vations: (i) a more accurate consideration of the coupling on 
each bond must include the effects of local dist ortions of the 
crystal !eld, direct d–d hopping, and mixing with higher lying 
states outside the t2g manifold, and (ii) the 4d and 5d orbitals 
are spatially rather extended, which may generate substantial 
longer-range exchange beyond nearest neighbours. In this 
section, we review the current understanding of each of these 
effects.

In the most general case, anisotropic magnetic interaction 
between sites i and j is described by the Hamiltonian:

Hij = Si · Jij · Sj (7)

where Jij is a 3 × 3 exchange tensor. There are different 
schemes to parametrize this tensor, which are appropriate for 
different local symmetries. Assuming local C2h symmetry of 
the ij-bond, the convention is to write the interactions:

CFS SOC

free ionOh

1 2 3

(a)

(b)

(c)

Figure 2. (a) Combined effect of crystal !eld splitting and spin–
orbit coupling (SOC) on the local d-orbital states. (b) Summary of 
hopping paths considered in the idealized edge-sharing model of 
Jackeli and Khaliullin. (c) Schematic view of virtual processes that 
lead to the emergence of the Kitaev interactions for this case.
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Hij = Jij Si · Sj + Kij Sγ
i Sγ

j + Γij

(
Sα

i Sβ
j + Sβ

i Sα
j

)

+ Γ′
ij

(
Sγ

i Sα
j + Sγ

i Sβ
j + Sα

i Sγ
j + Sβ

i Sγ
j

) 
(8)

where {α,β, γ} = {y, z, x}, {z, x, y} and {x, y, z}, for the 
X-, Y-, and Z-bonds, respectively. For lower symmetry 
local environments, further terms may also be required to 
fully parameterize the interactions. For example, a !nite 
Dzyaloshinskii–Moriya interaction Dij · (Si × Sj) is symme-
try permitted for second-neighbour interactions in all Kitaev 
candidate lattices, as well as certain !rst-neighbour bonds in 
the 3D materials.

Before reviewing the origin of these additional interac-
tions, we remark that the phase diagram of equation (8) has 
been studied in detail in various parameter regimes. The !rst 
works considered the simplest extension to Kitaev’s model on 
the honeycomb lattice, namely the addition of a nearest neigh-
bour J1 term to yield the Heisenberg–Kitaev (HK) model, 
which has now been studied at the classical and quantum 
levels, both at zero [22–26], and !nite temperature [27–29], 
as well as !nite magnetic !eld [30–32]. The effects of !nite 
off-diagonal nearest-neighbour interactions Γ1 and Γ′

1 were 
later considered [23, 33–35], along with longer range second 
neighbour Kitaev K2 terms [36], and Heisenberg J2, J3 inter-
actions [37, 38]. These works have revealed, in addition to 
the Kitaev spin-liquid states appearing for large nearest neigh-
bour Kitaev |K1| interactions, a complex variety of interesting 
magnetically ordered states, which are selected by the various 
competing anisotropic interactions. A relatively comprehen-
sive view of these phases, in relation to the real materials, has 
now emerged from detailed analysis of the parameter regimes 
thought to be relevant to various materials [39–45]. The 
interested reader is referred to these works. Finally, signi!-
cant interest in Kitaev-like models on other lattices has been 
prompted by the study of materials detailed in sections 3.1 and 
4. For example, a variety of theoretical works focusing on the 
3D honeycomb derivatives [46–51] have now appeared, along 
with studies on the 2D triangular lattice [17, 52–55], and oth-
ers [56].

2.3.1. Local distortions. In real materials, distortion of the 
local crystal !eld environment away from perfect octahedral 
geometry reduces the point group symmetry at each metal 
atom from the ideal Oh to C2 or C3, for example. Such lat-
tice distortions lift the degeneracy of the t2g orbitals and par-
tially quench the orbital angular momentum. This effect alters 
the nature of the 4d and 5d holes from spin–orbit entangled 
jeff =

1
2 states to states favouring a different mixture of spin 

and orbital character. Accordingly, the effective magnetic cou-
plings also interpolate between different regimes, depending 
on the strength of spin–orbit coupling in relation to the mag-
nitude of the induced t2g splitting. For example, for distortions 
that completely lift the t2g degeneracy, the local moments are 
continuously deformed into conventional pure s = 1

2 states, 
which exhibit nearly isotropic Heisenberg interactions, as 
the orbital angular momentum is progressively quenched. 

Otherwise, coupling of the spin to a partially quenched orbital 
momentum may produce alternate anisotropic exchange inter-
actions beyond the ideal Kitaev terms.

The effects of local distortions of the crystal !eld can be 
illustrated by reviewing the simplest relevant case where C3 
symmetry is retained, such as considered in [33, 38, 57]. Such 
distortions include trigonal compression or elongation of the 
octahedra, as shown in !gure 3(a). In this case, the t2g mani-
fold is split into singly degenerate a(1g) and doubly degener-
ate e(g) orbitals (for λ = 0). For λ != 0, !gure 3(b) shows the 
ground state hole occupancy as a function of ∆/λ expressed 
in both, the jeff and the t2g basis. For a distortion with a [1 1 1] 
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Figure 3. (a) Effects of trigonal distortion on the d-orbital states. 
(b) Evolution of the composition of the t2g hole with crystal !eld 
splitting. The contribution from jeff =

1
2 states remains large over a 

wide range. (c) Modi!cation of the nearest neighbour interactions 
for pure ligand-assisted (t2) hopping. (d) Induced anisotropy of the 
g-factor; ‖ refers to the normal of the honeycomb plane.
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Finally, we note that more recent interest has turned to 
the response of α-RuCl3 in an external magnetic !eld, which 
suppresses the zigzag order at roughly Bc ∼ 7 T for in-plane 
!elds [142]. Interest in the high-!eld phase is partially moti-
vated by predictions of a !eld-induced spin-liquid state [41]. 
A picture of this high-!eld state is now emerging from neu-
tron [182, 183], NMR [184–186], speci!c heat [182, 184, 
187], magnetization [142, 152], and thermal transport [188, 
189] measurements, as well as from THz and electron spin 
resonance [190, 191] spectroscopies.

In the vicinity of the critical !eld, phononic heat transport 
is strongly suppressed, indicating a multitude of low-lying 
magnetic excitations consistent with the closure of an excita-
tion gap [188, 189]. This result is supported both by speci!c 
heat data [182, 184, 187] and by a strong increase of the NMR 
relaxation rate near Bc at low temperatures [184]. The closure 
of the gap likely demonstrates the existence of a !eld-induced 
quantum critical point, which has been suggested to be of 
Ising type [187] based on the magnetic interactions of [181]. 
For B > Bc, NMR [184], thermal transport [188], and speci!c 
heat [182, 184, 187] measurements all demonstrate the open-
ing of an excitation gap that increases linearly with !eld. In 
this !eld range, the speci!c heat shows no peak on decreasing 
the temperature. This has been suggested as evidence that this 
gapped state is a quantum spin-liquid connected to the Kitaev 
state, thus implying the emergence of fractionalized excita-
tions at high !eld [183]. However, recent consideration of the 
relevant microscopic interactions have indicated that the high-
!eld state may instead represent a quantum paramagnetic state 
supporting non-fractionalized excitations and lacking direct 
connection to the Kitaev spin-liquid [192]. The nature of the 
excitations close to the critical !eld B ≈ Bc remains an inter-
esting subject of future study, particularly given the possibility 
of quantum critical behaviour [184, 187].

3.3. Beyond 2D: β- and γ-Li2IrO3

The planar honeycomb iridate α-Li2IrO3 can be seen as a 
toolbox for designing further Kitaev materials. Its β- and γ-
polymorphs represent three-dimensional (3D) varieties of 
the honeycomb lattice. Similar to the original (planar) hon-
eycomb version, each site of the lattice is three-coordinated, 

but the bonds are no longer coplanar—forming, instead, 3D 
networks that are coined ‘hyper’-honeycomb (β-Li2IrO3, H0) 
and ‘stripy’- or ‘harmonic’-honeycomb (γ-Li2IrO3, H1) lat-
tices. Here, H stands for a single stripe of hexagons, and H∞ 
denotes planar honeycomb lattice. By changing the super-
script at H, an in!nitely large number of such lattices can be 
constructed [193].

3.3.1. Crystal structures and synthesis. On the structural 
level, the polymorphism of Li2IrO3 stems from the fact that the 
A2MO3 oxides are ordered versions of the rocksalt structure, 
where oxygen ions form close packing, with A and B cations 
occupying octahedral voids [194]. By changing the sequence 
of the A and B ions, crystal structures hosting any given Hn 

Table 5. Bond-averaged values of the largest magnetic interactions (in units of meV) within the plane for α-RuCl3 obtained from various 
methods. For [149], the two numbers represent the range of values found in various relaxed structures. ‘Pert. Theo.’ refers to second order 
perturbation theory, ‘QC’  =  quantum chemistry methods, ‘ED’  =  exact diagonalization, ‘DFT’  =  density functional theory total energy, 
‘Exp. An.’  =  experimental analysis. See also !gure 19.

Method Structure J1 K1 Γ1 J3

Exp. An. [166] — −4.6 +7.0 — —
Pert. Theo. [149] P3112 −3.5 +4.6 +6.4 —
QC (2-site) [41] P3112 −1.2 -0.5 +1.0 —
ED (6-site) [45] P3112 −5.5 +7.6 +8.4 +2.3
Pert. Theo. [149] Relaxed −2.8/− 0.7 −9.1/− 3.0 +3.7/+  7.3 —
ED (6-site) [45] C2/m −1.7 −6.7 +6.6 +2.7
QC (2-site) [41] C2/m +0.7 −5.1 +1.2 —
DFT [180] C2/m −1.8 −10.6 +3.8 +1.3
Exp. An. [181] — −0.5 −5.0 +2.5 +0.5
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Figure 19. Phase diagram of the (J1, K1,Γ1) model (with 
J3 = 0) from [181], using J1 = cosφ sin θ, K1 = sinφ sin θ, 
and Γ1 = cos θ . Here, ‘FM’  =  ferromagnet, ‘AFM’  =  Neel 
antiferromagnet, ‘IC’  =  incommensurate spiral, ‘SS’  =  stripy order, 
and the white regions near θ = π/2,φ = ±π/2 are the Kitaev spin-
liquids. Reported interactions for α-RuCl3 in table 5 are marked 
by numbered points, corresponding to references: (1) [166], (2) 
[149], (3) [41], (4) [45], (5) [149], (6) [45], (7) [41], (8) [180], and 
(9) [181]. For (5), the range of values for various relaxed structures 
is indicated. Although the interactions in the real material are still 
under debate, the most recent works (5-9) agree K1 < 0, with 
Γ1 > 0.
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Finally, we note that more recent interest has turned to 
the response of α-RuCl3 in an external magnetic !eld, which 
suppresses the zigzag order at roughly Bc ∼ 7 T for in-plane 
!elds [142]. Interest in the high-!eld phase is partially moti-
vated by predictions of a !eld-induced spin-liquid state [41]. 
A picture of this high-!eld state is now emerging from neu-
tron [182, 183], NMR [184–186], speci!c heat [182, 184, 
187], magnetization [142, 152], and thermal transport [188, 
189] measurements, as well as from THz and electron spin 
resonance [190, 191] spectroscopies.

In the vicinity of the critical !eld, phononic heat transport 
is strongly suppressed, indicating a multitude of low-lying 
magnetic excitations consistent with the closure of an excita-
tion gap [188, 189]. This result is supported both by speci!c 
heat data [182, 184, 187] and by a strong increase of the NMR 
relaxation rate near Bc at low temperatures [184]. The closure 
of the gap likely demonstrates the existence of a !eld-induced 
quantum critical point, which has been suggested to be of 
Ising type [187] based on the magnetic interactions of [181]. 
For B > Bc, NMR [184], thermal transport [188], and speci!c 
heat [182, 184, 187] measurements all demonstrate the open-
ing of an excitation gap that increases linearly with !eld. In 
this !eld range, the speci!c heat shows no peak on decreasing 
the temperature. This has been suggested as evidence that this 
gapped state is a quantum spin-liquid connected to the Kitaev 
state, thus implying the emergence of fractionalized excita-
tions at high !eld [183]. However, recent consideration of the 
relevant microscopic interactions have indicated that the high-
!eld state may instead represent a quantum paramagnetic state 
supporting non-fractionalized excitations and lacking direct 
connection to the Kitaev spin-liquid [192]. The nature of the 
excitations close to the critical !eld B ≈ Bc remains an inter-
esting subject of future study, particularly given the possibility 
of quantum critical behaviour [184, 187].

3.3. Beyond 2D: β- and γ-Li2IrO3

The planar honeycomb iridate α-Li2IrO3 can be seen as a 
toolbox for designing further Kitaev materials. Its β- and γ-
polymorphs represent three-dimensional (3D) varieties of 
the honeycomb lattice. Similar to the original (planar) hon-
eycomb version, each site of the lattice is three-coordinated, 

but the bonds are no longer coplanar—forming, instead, 3D 
networks that are coined ‘hyper’-honeycomb (β-Li2IrO3, H0) 
and ‘stripy’- or ‘harmonic’-honeycomb (γ-Li2IrO3, H1) lat-
tices. Here, H stands for a single stripe of hexagons, and H∞ 
denotes planar honeycomb lattice. By changing the super-
script at H, an in!nitely large number of such lattices can be 
constructed [193].

3.3.1. Crystal structures and synthesis. On the structural 
level, the polymorphism of Li2IrO3 stems from the fact that the 
A2MO3 oxides are ordered versions of the rocksalt structure, 
where oxygen ions form close packing, with A and B cations 
occupying octahedral voids [194]. By changing the sequence 
of the A and B ions, crystal structures hosting any given Hn 

Table 5. Bond-averaged values of the largest magnetic interactions (in units of meV) within the plane for α-RuCl3 obtained from various 
methods. For [149], the two numbers represent the range of values found in various relaxed structures. ‘Pert. Theo.’ refers to second order 
perturbation theory, ‘QC’  =  quantum chemistry methods, ‘ED’  =  exact diagonalization, ‘DFT’  =  density functional theory total energy, 
‘Exp. An.’  =  experimental analysis. See also !gure 19.

Method Structure J1 K1 Γ1 J3

Exp. An. [166] — −4.6 +7.0 — —
Pert. Theo. [149] P3112 −3.5 +4.6 +6.4 —
QC (2-site) [41] P3112 −1.2 -0.5 +1.0 —
ED (6-site) [45] P3112 −5.5 +7.6 +8.4 +2.3
Pert. Theo. [149] Relaxed −2.8/− 0.7 −9.1/− 3.0 +3.7/+  7.3 —
ED (6-site) [45] C2/m −1.7 −6.7 +6.6 +2.7
QC (2-site) [41] C2/m +0.7 −5.1 +1.2 —
DFT [180] C2/m −1.8 −10.6 +3.8 +1.3
Exp. An. [181] — −0.5 −5.0 +2.5 +0.5
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Figure 19. Phase diagram of the (J1, K1,Γ1) model (with 
J3 = 0) from [181], using J1 = cosφ sin θ, K1 = sinφ sin θ, 
and Γ1 = cos θ . Here, ‘FM’  =  ferromagnet, ‘AFM’  =  Neel 
antiferromagnet, ‘IC’  =  incommensurate spiral, ‘SS’  =  stripy order, 
and the white regions near θ = π/2,φ = ±π/2 are the Kitaev spin-
liquids. Reported interactions for α-RuCl3 in table 5 are marked 
by numbered points, corresponding to references: (1) [166], (2) 
[149], (3) [41], (4) [45], (5) [149], (6) [45], (7) [41], (8) [180], and 
(9) [181]. For (5), the range of values for various relaxed structures 
is indicated. Although the interactions in the real material are still 
under debate, the most recent works (5-9) agree K1 < 0, with 
Γ1 > 0.
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the dominant oxygen-mediated hopping con!nes the electrons 
to local hopping paths of the type dxy-Opx-dxz-Opz-dyz-Opy-dxy , 
shown in !gure 12. Following such a hopping path, each t2g 
hole can only traverse a local hexagon formed by six metal 
sites in the λ → 0 limit. In this way, all states become local-
ized to such hexagons even at the single-particle level! In 

analogy with molecular benzene, the nonrelativistic t2g bands 
are split into six nearly #at bands described in the basis of 
quasi-molecular orbitals (QMOs) built from linear combina-
tions of the six t2g orbitals shown in !gure 12. Such a QMO-
based insulating state can be distinguished from the jeff =

1
2 

state using experimental observables, including optical con-
ductivity and RIXS data, with the honeycomb iridates lying 
on the jeff =

1
2 side of the phase diagram [109].

Interestingly, the QMOs form a natural basis for many 
layered honeycomb systems with 4d ions, as in Li2RhO3 [81] 
and SrRu2O6 [110, 111]. These QMOs states are, however, 
very sensitive to changes in the crystal structure [63]. Further 
investigation of these issues related to Li2RhO3 currently 
await detailed RIXS and optical conductivity measurements, 
which have so-far been hampered by unavailability of high 
quality single crystals.

3.1.3. Magnetic properties. At high temperatures, the magn-
etic susceptibilities [69, 73, 74] of Na2IrO3 and α-Li2IrO3 fol-
low the Curie–Weiss law with effective moments close to 1.73 
µB, consistent with the jeff =

1
2 scenario suggested by RIXS 

and optical measurements. Whereas the effective moments 
are weakly dependent on the !eld direction (owing to a small 
anisotropy in the g-tensor), the magnetic susceptibility is 
strongly anisotropic following strong directional dependence 
of the Curie–Weiss temperature Θ (!gure 13). Opposite #a-
vors of the anisotropy (table 2), re#ect salient microscopic dif-
ferences between the two iridates.

The Néel temperatures (TN) are reported to be 15 K in α-
Li2IrO3 [69, 112] and ranging from 13 to 18 K in Na2IrO3 [64, 
79, 113], presumably due to differences in sample quality. The 
suppression of the ordering temperatures far below the Weiss 
temperatures in both systems is an indicator of strong frustra-
tion via the standard criterion of the Θ/TN  ratio [114], which 
turns out to be between 5 and 10 for the iridates8. Further sig-
natures of the frustration include large release of the magn-
etic entropy above TN [115] and signi!cant reduction in the 
ordered moments, 0.22(1) µB in Na2IrO3 [79] and 0.40(5) µB 
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Figure 12. (a) Relevant metal and ligand orbitals for constructing 
the basis of quasimolecular orbitals (QMOs) showing the hopping 
path within a single hexagon. The orbitals are pictured with phases 
corresponding to the totally symmetric a1g QMO combination.  
(b) Nonrelativistic DOS computed at the GGA lavel for honeycomb 
materials Li2RhO3, α-RuCl3, α-Li2IrO3 and Na2IrO3 showing 
contributions from the six QMOs of different symmetry.

Table 2. Summary of magnetic parameters for honeycomb 
Na2IrO3, α-Li2IrO3, Li2RhO3, and α-RuCl3. The latter material is 
discussed in section 2.3.2. See text for relevant references.

Property Na2IrO3 α-Li2IrO3 Li2RhO3 α-RuCl3

µeff (µB) 1.79 1.83 2.03 2.0 to 2.7
Θiso (K) ∼−120 −33 to 

−100
∼−50 ∼  +40

Θab (K) −176 Θab > Θc — +38 to  +68
Θc (K) −40 — — −100 to 

−150
TN (K) 13 − 18 ∼15 (6) 7 to 14
Order Zigzag Spiral Glassy Zigzag
k-vector (0, 1, 1

2 ) (0.32, 0, 0) — (0, 1, 1
2 )

8 Absolute values of the Curie–Weiss temperatures should be taken with cau-
tion, because they depend on the temperature range of the !tting.
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Finally, we note that more recent interest has turned to 
the response of α-RuCl3 in an external magnetic !eld, which 
suppresses the zigzag order at roughly Bc ∼ 7 T for in-plane 
!elds [142]. Interest in the high-!eld phase is partially moti-
vated by predictions of a !eld-induced spin-liquid state [41]. 
A picture of this high-!eld state is now emerging from neu-
tron [182, 183], NMR [184–186], speci!c heat [182, 184, 
187], magnetization [142, 152], and thermal transport [188, 
189] measurements, as well as from THz and electron spin 
resonance [190, 191] spectroscopies.

In the vicinity of the critical !eld, phononic heat transport 
is strongly suppressed, indicating a multitude of low-lying 
magnetic excitations consistent with the closure of an excita-
tion gap [188, 189]. This result is supported both by speci!c 
heat data [182, 184, 187] and by a strong increase of the NMR 
relaxation rate near Bc at low temperatures [184]. The closure 
of the gap likely demonstrates the existence of a !eld-induced 
quantum critical point, which has been suggested to be of 
Ising type [187] based on the magnetic interactions of [181]. 
For B > Bc, NMR [184], thermal transport [188], and speci!c 
heat [182, 184, 187] measurements all demonstrate the open-
ing of an excitation gap that increases linearly with !eld. In 
this !eld range, the speci!c heat shows no peak on decreasing 
the temperature. This has been suggested as evidence that this 
gapped state is a quantum spin-liquid connected to the Kitaev 
state, thus implying the emergence of fractionalized excita-
tions at high !eld [183]. However, recent consideration of the 
relevant microscopic interactions have indicated that the high-
!eld state may instead represent a quantum paramagnetic state 
supporting non-fractionalized excitations and lacking direct 
connection to the Kitaev spin-liquid [192]. The nature of the 
excitations close to the critical !eld B ≈ Bc remains an inter-
esting subject of future study, particularly given the possibility 
of quantum critical behaviour [184, 187].

3.3. Beyond 2D: β- and γ-Li2IrO3

The planar honeycomb iridate α-Li2IrO3 can be seen as a 
toolbox for designing further Kitaev materials. Its β- and γ-
polymorphs represent three-dimensional (3D) varieties of 
the honeycomb lattice. Similar to the original (planar) hon-
eycomb version, each site of the lattice is three-coordinated, 

but the bonds are no longer coplanar—forming, instead, 3D 
networks that are coined ‘hyper’-honeycomb (β-Li2IrO3, H0) 
and ‘stripy’- or ‘harmonic’-honeycomb (γ-Li2IrO3, H1) lat-
tices. Here, H stands for a single stripe of hexagons, and H∞ 
denotes planar honeycomb lattice. By changing the super-
script at H, an in!nitely large number of such lattices can be 
constructed [193].

3.3.1. Crystal structures and synthesis. On the structural 
level, the polymorphism of Li2IrO3 stems from the fact that the 
A2MO3 oxides are ordered versions of the rocksalt structure, 
where oxygen ions form close packing, with A and B cations 
occupying octahedral voids [194]. By changing the sequence 
of the A and B ions, crystal structures hosting any given Hn 

Table 5. Bond-averaged values of the largest magnetic interactions (in units of meV) within the plane for α-RuCl3 obtained from various 
methods. For [149], the two numbers represent the range of values found in various relaxed structures. ‘Pert. Theo.’ refers to second order 
perturbation theory, ‘QC’  =  quantum chemistry methods, ‘ED’  =  exact diagonalization, ‘DFT’  =  density functional theory total energy, 
‘Exp. An.’  =  experimental analysis. See also !gure 19.

Method Structure J1 K1 Γ1 J3

Exp. An. [166] — −4.6 +7.0 — —
Pert. Theo. [149] P3112 −3.5 +4.6 +6.4 —
QC (2-site) [41] P3112 −1.2 -0.5 +1.0 —
ED (6-site) [45] P3112 −5.5 +7.6 +8.4 +2.3
Pert. Theo. [149] Relaxed −2.8/− 0.7 −9.1/− 3.0 +3.7/+  7.3 —
ED (6-site) [45] C2/m −1.7 −6.7 +6.6 +2.7
QC (2-site) [41] C2/m +0.7 −5.1 +1.2 —
DFT [180] C2/m −1.8 −10.6 +3.8 +1.3
Exp. An. [181] — −0.5 −5.0 +2.5 +0.5
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Figure 19. Phase diagram of the (J1, K1,Γ1) model (with 
J3 = 0) from [181], using J1 = cosφ sin θ, K1 = sinφ sin θ, 
and Γ1 = cos θ . Here, ‘FM’  =  ferromagnet, ‘AFM’  =  Neel 
antiferromagnet, ‘IC’  =  incommensurate spiral, ‘SS’  =  stripy order, 
and the white regions near θ = π/2,φ = ±π/2 are the Kitaev spin-
liquids. Reported interactions for α-RuCl3 in table 5 are marked 
by numbered points, corresponding to references: (1) [166], (2) 
[149], (3) [41], (4) [45], (5) [149], (6) [45], (7) [41], (8) [180], and 
(9) [181]. For (5), the range of values for various relaxed structures 
is indicated. Although the interactions in the real material are still 
under debate, the most recent works (5-9) agree K1 < 0, with 
Γ1 > 0.

J. Phys.: Condens. Matter 29 (2017) 493002

Winter S M et al., 
J.Phys.: Condens. Matter 29 493002 (2017)
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Hij = Jij Si · Sj + Kij Sγ
i Sγ

j + Γij

(
Sα

i Sβ
j + Sβ

i Sα
j

)

+ Γ′
ij

(
Sγ

i Sα
j + Sγ

i Sβ
j + Sα

i Sγ
j + Sβ

i Sγ
j

) 
(8)

where {α,β, γ} = {y, z, x}, {z, x, y} and {x, y, z}, for the 
X-, Y-, and Z-bonds, respectively. For lower symmetry 
local environments, further terms may also be required to 
fully parameterize the interactions. For example, a !nite 
Dzyaloshinskii–Moriya interaction Dij · (Si × Sj) is symme-
try permitted for second-neighbour interactions in all Kitaev 
candidate lattices, as well as certain !rst-neighbour bonds in 
the 3D materials.

Before reviewing the origin of these additional interac-
tions, we remark that the phase diagram of equation (8) has 
been studied in detail in various parameter regimes. The !rst 
works considered the simplest extension to Kitaev’s model on 
the honeycomb lattice, namely the addition of a nearest neigh-
bour J1 term to yield the Heisenberg–Kitaev (HK) model, 
which has now been studied at the classical and quantum 
levels, both at zero [22–26], and !nite temperature [27–29], 
as well as !nite magnetic !eld [30–32]. The effects of !nite 
off-diagonal nearest-neighbour interactions Γ1 and Γ′

1 were 
later considered [23, 33–35], along with longer range second 
neighbour Kitaev K2 terms [36], and Heisenberg J2, J3 inter-
actions [37, 38]. These works have revealed, in addition to 
the Kitaev spin-liquid states appearing for large nearest neigh-
bour Kitaev |K1| interactions, a complex variety of interesting 
magnetically ordered states, which are selected by the various 
competing anisotropic interactions. A relatively comprehen-
sive view of these phases, in relation to the real materials, has 
now emerged from detailed analysis of the parameter regimes 
thought to be relevant to various materials [39–45]. The 
interested reader is referred to these works. Finally, signi!-
cant interest in Kitaev-like models on other lattices has been 
prompted by the study of materials detailed in sections 3.1 and 
4. For example, a variety of theoretical works focusing on the 
3D honeycomb derivatives [46–51] have now appeared, along 
with studies on the 2D triangular lattice [17, 52–55], and oth-
ers [56].

2.3.1. Local distortions. In real materials, distortion of the 
local crystal !eld environment away from perfect octahedral 
geometry reduces the point group symmetry at each metal 
atom from the ideal Oh to C2 or C3, for example. Such lat-
tice distortions lift the degeneracy of the t2g orbitals and par-
tially quench the orbital angular momentum. This effect alters 
the nature of the 4d and 5d holes from spin–orbit entangled 
jeff =

1
2 states to states favouring a different mixture of spin 

and orbital character. Accordingly, the effective magnetic cou-
plings also interpolate between different regimes, depending 
on the strength of spin–orbit coupling in relation to the mag-
nitude of the induced t2g splitting. For example, for distortions 
that completely lift the t2g degeneracy, the local moments are 
continuously deformed into conventional pure s = 1

2 states, 
which exhibit nearly isotropic Heisenberg interactions, as 
the orbital angular momentum is progressively quenched. 

Otherwise, coupling of the spin to a partially quenched orbital 
momentum may produce alternate anisotropic exchange inter-
actions beyond the ideal Kitaev terms.

The effects of local distortions of the crystal !eld can be 
illustrated by reviewing the simplest relevant case where C3 
symmetry is retained, such as considered in [33, 38, 57]. Such 
distortions include trigonal compression or elongation of the 
octahedra, as shown in !gure 3(a). In this case, the t2g mani-
fold is split into singly degenerate a(1g) and doubly degener-
ate e(g) orbitals (for λ = 0). For λ != 0, !gure 3(b) shows the 
ground state hole occupancy as a function of ∆/λ expressed 
in both, the jeff and the t2g basis. For a distortion with a [1 1 1] 
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Figure 3. (a) Effects of trigonal distortion on the d-orbital states. 
(b) Evolution of the composition of the t2g hole with crystal !eld 
splitting. The contribution from jeff =

1
2 states remains large over a 

wide range. (c) Modi!cation of the nearest neighbour interactions 
for pure ligand-assisted (t2) hopping. (d) Induced anisotropy of the 
g-factor; ‖ refers to the normal of the honeycomb plane.
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Kitaev Physics 

on a 2D Honeycomb Lattice: RuCl3

 

 
 
Figure 4: Key Data on Spin Liquid Candidates. (a) Spin continuum of herbertsmithite from 
inelastic neutron scattering [S(q,w) at 1.6 K in the HK0 plane: upper, 6 meV; middle, 2 meV; 
lower, 0.75 meV] (72), (b) field dependence of the spin gap of Zn-barlowite from nuclear 
magnetic resonance [upper: 19F Knight shift versus temperature for various magnetic fields; 
lower: magnetic field dependence of the spin gap, D, with dashed lines the expected behavior for 
S=½ and S=1 excitations] (81), and (c) quantized plateau in the thermal Hall effect of a-RuCl3 
[kxy/T versus magnetic field: upper, 3.7 K; middle 4.3 K; lower, 4.9 K] (92). 
 
 
  

0 100 200 300
0.00

0.01

0.02

0.03

0.04

0.000 0.002 0.004

0.015

0.03

0 4 8 12
0

4

8

0.0 0.2 0.4 0.6

1E-4

1E-3

1E-2

7.864 T
5.026 T
3 T
0.914 T

19
K 

(%
)

T (K)

7.864 T
5.026 T
3 T
0.914 T

19
K 

(%
)

χ (emu/mol)

∆
 (K

)

B (T)

S = 1 S = 1/2

19
K-

K c
he
m
 (%

)

1/T (K-1)

h
κ
xy

   2D/T   [( π/6)(k
B 2 /

)]
h

κ
xy

   2D/T   [( π/6)(k
B 2 /

)]
h

κ
xy

   2D/T   [( π/6)(k
B 2 /

)]
h

κ
xy

   2D/T   [( π/6)(k
B 2 /

)]

a

b

c

d 3.0

2.5

2.0

1.5

1.0

0.5

0

-0.5

κ x
y/T

  (
10

-3
 W

/K
2 m

)

6.05.55.04.54.0
µ0H⊥  (T)

0
 
1/2
 
1
 
3/2

10.09.08.07.0
µ0H||  (T)

5.6 K

8.2 K

15 K

1.5

1.0

0.5

0

κ x
y/T

  (
10

-3
 W

/K
2 m

)

0
 
 
 
 
1/2
 
 
 
 

9.08.58.07.5
µ0H||  (T)

3.7 K

1.0

0.5

0

κ x
y/T

  (
10

-3
 W

/K
2 m

)

0
 
 
 
 
1/2
 
 
 
 

4.3 K

1.0

0.5

0

-0.5

κ x
y/T

  (
10

-3
 W

/K
2 m

)

5.25.04.84.64.4
µ0H⊥  (T)

0
 
 
 
 
1/2
 
 
 
 

4.9 K

(a)		ZnCu3(OH)6Cl2 (b)		ZnCu3(OH)6FBr																									 (c)		a-RuCl3

0 5 10 15 20 0 0.15 0.3 0.45

0

10

20

(-K
 K

 0
)

(H H 0) (H H 0)

ωh--

ωh--

ωh--

ωh--

 

0

1

2

3

0

 

0

1

2

3

0

0

1

2

00

 

-2 -1 0 1 20
0

1

2

0

0

1

2

3

0

-2 -1 0 1 20
0

1

2

3

0
-2 -1 0 1 20

0

1

2

0

d

e

     =6 meV

           integrated

     =2 meV

     Dimer

over 1 to 9 meV

     =0.75 meV

calculation

Kasahara et al, 559, Nature, 227 (2018)



Different routes to spin liquid ground states: geometry and 
competing interactions. 

Materials issues are present and somewhat uncontrolled in all 
candidate materials.

Of the 4 examples discussed, 2 are relatively simple: 
Herbertsmithite (2D Kagome AF) is relatively simple due to its 
spin-only S=1/2.  The character of its gap (gapped or gapless) 
remains an outstanding issue. Classical spin ice pyrochlores are 
relatively simple as they can be successfully modelled classically. 

Both 3D pyrochlore candidates and 2D Kitaev candidates 
require moderate to strong SOC, and anisotropic exchange as 
a consequence.

Search for Spin Liquid Candidate Ground States 
in Real Materials


